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The image biomarker

standardisation initiative

The image biomarker standardisation initiative (IBSI) is an independent international collabora-

tion which works towards standardising the extraction of image biomarkers from acquired imaging

for the purpose of high-throughput quantitative image analysis (radiomics). Lack of reproducib-

ility and validation of high-throughput quantitative image analysis studies is considered to be a

major challenge for the field31,38,84. Part of this challenge lies in the scantiness of consensus-based

guidelines and definitions for the process of translating acquired imaging into high-throughput

image biomarkers. The IBSI therefore seeks to provide image biomarker nomenclature and defini-

tions, benchmark data sets, and benchmark values to verify image processing and image biomarker

calculations, as well as reporting guidelines, for high-throughput image analysis.

Permanent identifiers

The IBSI uses permanent identifiers for image biomarker definitions and important related

concepts such as image processing. These consist of four-character codes and may be used for

reference. Please do not use page numbers or section numbers as references, as these are subject

to change.

Copyright

This document is licensed under the Creative Commons Attribution 4.0 International License.

To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter

to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

The digital phantom (see section 5.1) is licensed under the Creative Commons Attribution 4.0

International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

The radiomics phantom (see section 5.2), which is based on a human lung cancer computed

tomography image and published by cancerdata.org (DOI:10.17195/candat.2016.08.1), is licensed

under the Creative Commons Attribution-NonCommercial 3.0 Unported Licence. To view a copy

of this license, visit https://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative

Commons, PO Box 1866, Mount View, CA 94042, USA. This license pertains to both the original

DICOM set, as well as the same data in NifTI format released by the IBSI.

Citation information

To cite the document or the digital phantom, please use the following citation:
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Chapter 1

Introduction

A biomarker is ”a characteristic that is objectively measured and evaluated as an indicator of

normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic in-

tervention”7. Biomarkers may be measured from a wide variety of sources, such as tissue samples,

cell plating, and imaging. The latter are often referred to as imaging biomarkers. Imaging biomark-

ers consist of both qualitative biomarkers, which require expert interpretation, and quantitative

biomarkers which are based on mathematical definitions. Calculation of quantitative imaging

biomarkers can be automated, which enables high-throughput analyses. We refer to such (high-

throughput) quantitative biomarkers as image biomarkers to differentiate them from qualitative

imaging biomarkers. Image biomarkers characterise the contents of (regions of) an image, such

as volume or mean intensity. Because of the historically close relationship with the computer

vision field, image biomarkers are also referred to as image features. The term features, instead

of biomarkers, will be used throughout the remainder of the reference manual, as the contents are

generally applicable and not limited to life sciences and medicine only.

This work focuses specifically on the (high-throughput) extraction of image biomarkers from

acquired, reconstructed and stored imaging. High-throughput quantitative image analysis (ra-

diomics) has shown considerable growth in e.g. cancer research41, but the scarceness of consensus

guidelines and definitions has led to it being described as a ”wild frontier”13. This reference manual

therefore presents an effort to chart a course through part of this frontier by presenting consensus-

based recommendations, guidelines, benchmarks and definitions for image biomarker extraction,

and thus increase the reproducibility of studies involving radiomics.

We opted for a specific focus on image biomarker extraction from acquired imaging. Thus, ima-

ging biomarker validation, viewed in a broader framework such as the one presented by O’Connor

et al. 54 , or in smaller-scope workflows such as those presented by Caicedo et al. 13 and by Lambin

et al. 41 , falls beyond the scope of this work. Notably, the question of standardising imaging bio-

marker acquisition and analysis is being addressed in a more comprehensive manner by groups such

as the Quantitative Imaging Biomarker Alliance52,66, the Quantitative Imaging Network16,53, and

task groups and committees of the American Association of Physicists in Medicine, the European

Association for Nuclear Medicine11, the European Society of Radiology (ESR)27, and the European

Organisation for Research and Treatment of Cancer (EORTC)54,82, among others. Where overlap

exists, the reference manual refers to existing recommendations and guidelines.

This reference manual is divided into several chapters that describe processing of acquired

imaging for high-throughput image biomarker extraction (Chapter 2); define a diverse set of image

biomarkers (Chapter 3); describe guidelines for reporting on high-throughput image biomarker

extraction and an image biomarker nomenclature (Chapter 4); describe the benchmark data sets

(Chapter 5); and the associated benchmark values for software verification (Chapter 6).
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Chapter 2

Image processing

Image processing is the sequence of operations required to derive image biomarkers (features) from

acquired images. In the context of this work an image is defined as a three-dimensional (3D) stack

of two-dimensional (2D) digital image slices. Image slices are stacked along the z-axis. This stack

is furthermore assumed to possess the same coordinate system, i.e. image slices are not rotated or

translated (in the xy-plane) with regards to each other. Moreover, digital images typically possess

a finite resolution. Intensities in an image are thus located at regular intervals, or spacing. In 2D

such regular positions are called pixels, whereas in 3D the term voxels is used. Pixels and voxels

are thus represented as the intersections on a regularly spaced grid. Alternatively, pixels and voxels

may be represented as rectangles and rectangular cuboids. The centers of the pixels and voxels

then coincide with the intersections of the regularly spaced grid. Both representations are used in

the document.

Pixels and voxels contain an intensity value for each channel of the image. The number of

channels depends on the imaging modality. Most medical imaging generates single-channel images,

whereas the number of channels in microscopy may be greater, e.g. due to different stainings. In

such multi-channel cases, features may be extracted for each separate channel, a subset of channels,

or alternatively, channels may be combined and converted to a single-channel representation. In

the remainder of the document we consider an image as if it only possesses a single channel.

The intensity of a pixel or voxel is also called a grey level or grey tone, particularly in single-

channel images. Though practically there is no difference, the terms grey level or grey tone are

more commonly used to refer to discrete intensities, including discretised intensities.

Image processing may be conducted using a wide variety of schemes. We therefore designed

a general image processing scheme for image feature calculation based on schemes used within

scientific literature38. The image processing scheme is shown in figure 2.1. The processing steps

referenced in the figure are described in detail within this chapter.

2.1 Data conversion 23XZ

Some imaging modalities require conversion of raw image data into a more meaningful presentation,

e.g. standardised uptake values (SUV)11. This is performed during the data conversion step.

Assessment of data conversion methods falls outside the scope of the current work.

2
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Image data

Segmentation

Voxel interpolation

Feature data

Data conversion

Region of interest
ROI

Image interpolation

ROI interpolation

Re-segmentation

ROI extraction

Discretisation

Intensity mask Morphological mask

Feature calculation  Calculation

local intensity

Calculation

Calculation

Calculation

Calculation

IH, IVH*, GLCM, GLRLM
GLSZM, NGTDM, NGLDM

morphological

statistical

GLDZM

Image
post-acquisition

processing

Figure 2.1 — Image processing scheme for image feature calculation. Depending on the specific
imaging modality and purpose, some steps may be omitted. The region of interest (ROI) is explicitly
split into two masks, namely an intensity and morphological mask, after interpolation to the same
grid as the interpolated image. Feature calculation is expanded to show the different feature families
with specific pre-processing. IH: intensity histogram; IVH: intensity-volume histogram; GLCM: grey
level cooccurrence matrix; GLRLM: grey level run length matrix; GLSZM: grey level size zone matrix;
NGTDM: neighbourhood grey tone difference matrix; NGLDM: Neighbouring grey level dependence
matrix; GLDZM: grey level distance zone matrix; *Discretisation of IVH differs from IH and texture
features, see section 3.5.
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2.2 Image post-acquisition processing PCDE

Images are post-processed to enhance image quality. For instance, magnetic resonance imaging

(MRI) contains both Gaussian and Rician noise33 and may benefit from denoising. As another

example, intensities measured using MR may be non-uniform across an image and could require

correction9,59,80. FDG-PET-based may furthermore be corrected for partial volume effects12,64 and

noise25,43. In CT imaging, metal objects, e.g. pacemakers and tooth implants, introduce artifacts

and may require artifinterpact suppression32. Microscopy images generally benefit from field-of-

view illumination correction as illumination is usually inhomogeneous due to the light-source or

the optical path13,60.

Evaluation and standardisation of various image post-acquisition processing methods falls out-

side the scope of the current work. Note that vendors may provide or implement software to

perform noise reduction and other post-processing during image reconstruction. In such cases,

additional post-acquisition processing may not be required.

2.3 Segmentation OQYT

High-throughput image analysis, within the feature-based paradigm, relies on the definition of

regions of interest (ROI). ROIs are used to define the region in which features are calculated.

What constitutes an ROI depends on the imaging and the study objective. For example, in 3D

microscopy of cell plates, cells are natural ROIs. In medical imaging of cancer patients, the tumour

volume is a common ROI. ROIs can be defined manually by experts or (semi-)automatically using

algorithms.

From a process point-of-view, segmentation leads to the creation of an ROI mask R, for which

every voxel j ∈ R (Rj) is defined as:

Rj =

{
1 j in ROI

0 otherwise

ROIs are typically stored with the accompanying image. Some image formats directly store

ROI masks as voxels (e.g. NIfTI, NRRD and DICOM Segmentation), and generating the ROI mask is

conducted by loading the corresponding image. In other cases the ROI is saved as a set of (x, y, z)

points that define closed loops of (planar) polygons, for example within DICOM RTSTRUCT or DICOM

SR files. In such cases, we should determine which voxel centers lie within the space enclosed by

the contour polygon in each slice to generate the ROI mask.

A common method to determine whether a point in an image slice lies inside a 2D polygon

is the crossing number algorithm, for which several implementations exist56. The main concept

behind this algorithm is that for any point inside the polygon, any line originating outside the

polygon will cross the polygon an uneven number of times. A simple example is shown in figure

2.2. The implementation in the example makes use of the fact that the ROI mask is a regular grid

to scan entire rows at a time. The example implementation consists of the following steps:

1. (optional) A ray is cast horizontally from outside the polygon for each of the n image rows.

As we iterate over the rows, it is computationally beneficial to exclude polygon edges that

will not be crossed by the ray for the current row j. If the current row has y-coordinate yj ,

and edge k has two vertices with y-coordinates yk1 and yk2, the ray will not cross the edge

if both vertices lie either above or below yj , i.e. yj < yk1, yk2 or yj > yk1, yk2. For each row

j, find those polygon edges whose y-component of the vertices do not both lie on the same
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side of the row coordinate yj . This step is used to limit calculation of intersection points to

only those that cross a ray cast from outside the polygon – e.g. ray with origin (−1, yj) and

direction (1, 0). This an optional step.

2. Determine intersection points xi of the (remaining) polygon edges with the ray.

3. Iterate over intersection points and add 1 to the count of each pixel center with x ≥ xi.

4. Apply the even-odd rule. Pixels with an odd count are inside the polygon, whereas pixels

with an even count are outside.

Note that the example represents a relatively naive implementation that will not consistently

assign voxel centers positioned on the polygon itself to the interior.

grid with polygon contour
1. find intersecting polygons

2. find ray-polygon intersection 

I II

I II

3. count intersections along line

4. apply even-odd rule

I II

I II

0 1 1 1 1 2

Figure 2.2 — Simple algorithm to determine which pixels are inside a 2D polygon. The suggested
implementation consists of four steps: (1) Omit edges that will not intersect with the current row of
voxel centers. (2) Calculate intersection points of edges I and II with the ray for the current row. (3)
Determine the number of intersections crossed from ray origin to the row voxel centers. (4) Apply
even-odd rule to determine whether voxel centers are inside the polygon.

2.4 Interpolation VTM2

Texture feature sets require interpolation to isotropic voxel spacing to be rotationally invariant,

and to allow comparison between image data from different samples, cohorts or batches. Voxel

interpolation affects image feature values as many image features are sensitive to changes in voxel

size4,8,57,58,83. Maintaining consistent isotropic voxel spacing across different measurements and

devices is therefore important for reproducibility. At the moment there are no clear indications

whether upsampling or downsampling schemes are preferable. Consider, for example, an image

stack of slices with 1.0 × 1.0 × 3.0 mm3 voxel spacing. Down-sampling (1.0 × 1.0 × 1.0 mm3)

requires inference and introduces artificial information, while conversely upsampling to the largest

dimension (3.0 × 3.0 × 3.0 mm3) incurs information loss. Multiple-scaling strategies potentially

offer a good trade-off74. Note that upsampling may introduce image aliasing artifacts that require

anti-aliasing filters prior to filtering48,86.

While in general 3D interpolation algorithms are used to interpolate 3D images, 2D interpol-

ation within the image slice plane may be recommended in some situations. In 2D interpolation

voxels are not interpolated between slices. This may be beneficial if, for example, the spacing

between slices is large compared to the desired voxel size, and/or compared to the in-plane spa-

cing. Applying 3D interpolation would either require inferencing a large number of voxels between
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slices (upsampling), or the loss of a large fraction of in-plane information (downsampling). The

disadvantage of 2D interpolation is that voxel spacing is no longer isotropic, and as a consequence

texture features can only be calculated in-plane.

Interpolation algorithms

Interpolation algorithms translate image intensities from the original image grid to an inter-

polation grid. In such grids, voxels are spatially represented by their center. Several algorithms

are commonly used for interpolation, such as nearest neighbour, trilinear, tricubic convolution and

tricubic spline interpolation. In short, nearest neighbour interpolation assigns the intensity of the

most nearby voxel in the original grid to each voxel in the interpolation grid. Trilinear interpolation

uses the intensities of the eight most nearby voxels in the original grid to calculate a new inter-

polated intensity using linear interpolation. Tricubic convolution and tricubic spline interpolation

draw upon a larger neighbourhood to evaluate a smooth, continuous third-order polynomial at the

voxel centers in the interpolation grid. The difference between tricubic convolution and tricubic

spline interpolation lies in the implementation. Whereas tricubic spline interpolation evaluates the

smooth and continuous third-order polynomial at every voxel center, tricubic convolution approx-

imates the solution using a convolution filter. Though tricubic convolution is faster, with modern

hardware and common image sizes, the difference in execution speed is practically meaningless.

Both interpolation algorithms produce similar results, and both are often referred to as tricubic

interpolation.

While no consensus exists concerning the optimal choice of interpolation algorithm, trilinear

interpolation is usually seen as a conservative choice. It does not lead to the blockiness produced

by nearest neighbour interpolation that introduces bias in local textures38. Nor does it lead to

out-of-range intensities which may occur due to overshoot with tricubic and higher order interpol-

ations. The latter problem can occur in acute intensity transitions, where the local neighbourhood

itself is not sufficiently smooth to evaluate the polynomial within the allowed range. Tricubic

methods, however, may retain tissue contrast differences better. Particularly when upsampling,

trilinear interpolation may act as a low-pass filter which suppresses higher spatial frequencies

and cause artefacts in high-pass spatial filters. Interpolation algorithms and their advantages and

disadvantages are treated in more detail elsewhere, e.g. Thévenaz et al. 68 .

In a phantom study, Larue et al. 42 compared nearest neighbour, trilinear and tricubic in-

terpolation and indicated that feature reproducibility is dependent on the selected interpolation

algorithm, i.e. some features were more reproducible using one particular algorithm.

Rounding image intensities after interpolation 68QD

Image intensities may require rounding after interpolation, or the application of cut-off values.

For example, in CT images intensities represent Hounsfield Units, and these do not take non-integer

values. Following voxel interpolation, interpolated CT intensities are thus rounded to the nearest

integer.

Partial volume effects in the ROI mask E8H9

If the image on which the ROI mask was defined, is interpolated after the ROI was segmented,

the ROI mask R should likewise be interpolated to the same dimensions. Interpolation of the ROI

mask is best conducted using either the nearest neighbour or trilinear interpolation methods, as

these are guaranteed to produce meaningful masks. Trilinear interpolation of the ROI mask leads

to partial volume effects, with some voxels containing fractions of the original voxels. Since a ROI
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mask is a binary mask, such fractions need to be binarised by setting a partial volume threshold δ:

Rj =

{
1 Rinterp,j ≥ δ
0 Rinterp,j < δ

A common choice for the partial volume threshold is δ = 0.5. For nearest neighbour interpolation

the ROI mask does not contain partial volume fractions, and may be used directly.

Interpolation results depend on the floating point representation used for the image and ROI

masks. Floating point representations should at least be full precision (32-bit) to avoid rounding

errors.

Interpolation grid UMPJ

Interpolated voxel centers lie on the intersections of a regularly spaced grid. Grid intersections

are represented by two coordinate systems. The first coordinate system is the grid coordinate

system, with origin at (0.0, 0.0, 0.0) and distance between directly neighbouring voxel centers (spa-

cing) of 1.0. The grid coordinate system is the coordinate system typically used by computers, and

consequentially, by interpolation algorithms. The second coordinate system is the world coordinate

system, which is typically found in (medical) imaging and provides an image scale. As the desired

isotropic spacing is commonly defined in world coordinate dimensions, conversions between world

coordinates and grid coordinates are necessary, and are treated in more detail after assessing grid

alignment methods.

Grid alignment affects feature values and is non-trivial. Three common grid alignments may

be identified, and are shown in figure 2.3:

1. Fit to original grid (58MB). In this case the interpolation grid is deformed so that the voxel

centers at the grid intersections overlap with the original grid vertices. For an original 4× 4

voxel grid with spacing (3.00, 3.00) mm and a desired interpolation spacing of (2.00, 2.00) mm

we first calculate the extent of the original voxel grid in world coordinates leading to an

extent of ((4 − 1) 3.00, ((4 − 1) 3.00) = (9.00, 9.00) mm. In this case the interpolated grid

will not exactly fit the original grid. Therefore we try to find the closest fitting grid, which

leads to a 6 × 6 grid by rounding up (9.00/2.00, 9.00/2.00). The resulting grid has a grid

spacing of (1.80, 1.80) mm in world coordinates, which differs from the desired grid spacing

of (2.00, 2.00) mm.

2. Align grid origins (SBKJ). A simple approach which conserves the desired grid spacing is

the alignment of the origins of the interpolation and original grids. Keeping with the same

example, the interpolation grid is (6 × 6). The resulting voxel grid has a grid spacing of

(2.00, 2.00) mm in world coordinates. By definition both grids are aligned at the origin,

(0.00, 0.00).

3. Align grid centers (3WE3). The position of the origin may depend on image meta-data

defining image orientation. Not all software implementations may process this meta-data the

same way. An implementation-independent solution is to align both grids on the grid center.

Again, keeping with the same example, the interpolation grid is (6× 6). Thus, the resulting

voxel grid has a grid spacing of (2.00, 2.00) mm in world coordinates.

Align grid centers is recommended as it is implementation-independent and achieves the desired

voxel spacing. Technical details of implementing align grid centers are described below.

Interpolation grid dimensions 026Q

The dimensions of the interpolation grid are determined as follows. Let na be the number of

points along one axis of the original grid and sa,w their spacing in world coordinates. Then, let
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sb,w be the desired spacing after interpolation. The axial dimension of the interpolated mesh grid

is then:

nb =

⌈
nasa
sb

⌉
Rounding towards infinity guarantees that the interpolation grid exists even when the original grid

contains few voxels. However, it also means that the interpolation mesh grid is partially located

outside of the original grid. Extrapolation is thus required. Padding the original grid with the

intensities at the boundary is recommended. Some implementations of interpolation algorithms

may perform this padding internally.

Interpolation grid position QCY4

For the align grid centers method, the positions of the interpolation grid points are determined

as follows. As before, let na and nb be the dimensions of one axis in the original and interpolation

grid, respectively. Moreover, let sa,w be the original spacing and sb,w the desired spacing for the

same axis in world coordinates. Then, with xa,w the origin of the original grid in world coordinates,

the origin of the interpolation grid is located at:

xb,w = xa,w +
sa(na − 1)− sb(nb − 1)

2

In the grid coordinate system, the original grid origin is located at xa,g = 0. The origin of the

interpolation grid is then located at:

xb,g =
1

2

(
na − 1− sb,w

sa,w
(nb − 1)

)
Here the fraction sb,w/sa,w = sb,g is the desired spacing in grid coordinates. Thus, the interpolation

grid points along the considered axis are located at grid coordinates:

xb,g, xb,g + sb,g, xb,g + 2sb,g, . . . , xb,g + (nb − 1)sb,g

Naturally, the above description applies to each grid axis.
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original grid fit to original grid

Interpola�on grid
Size: 6x6 points
Desired spacing: (2.00, 2.00)
Realised spacing: (1.80, 1.80)

Original grid
Size: 4x4 points
Spacing: (3.00, 3.00)

align grid origins

Interpola�on grid
Size: 6x6 points
Desired spacing: (2.00, 2.00)
Realised spacing: (2.00, 2.00)

align grid centers

Interpola�on grid
Size: 6x6 points
Desired spacing: (2.00, 2.00)
Realised spacing: (2.00, 2.00)

Figure 2.3 — Different interpolation mesh grids based on an original 4× 4 grid with (3.00, 3.00) mm
spacing. The desired interpolation spacing is (2.00, 2.00) mm. Fit to original grid creates an inter-
polation mesh grid that overlaps with the corners of the original grid. Align grid origins creates an
interpolation mesh grid that is positioned at the origin of the original grid. Align grid centers creates
an interpolation grid that is centered on the center of original and interpolation grids.
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Figure 2.4 — Example showing how intensity and morphological masks may differ due to re-
segmentation. (1) The original region of interest (ROI) is shown with pixel intensities. (2) Sub-
sequently, the ROI is re-segmented to only contain values in the range [1, 6]. Pixels outside this range
are marked for removal from the intensity mask. (3a) Resulting morphological mask, which is identical
to the original ROI. (3b) Re-segmented intensity mask. Note that due to re-segmentation, intensity
and morphological masks are different.

2.5 Re-segmentation IF9H

Re-segmentation entails updating the ROI mask R based on corresponding voxel intensities Xgl.

Re-segmentation may be performed to exclude voxels from a previously segmented ROI, and is

performed after interpolation. An example use would be the exclusion of air or bone voxels from an

ROI defined on CT imaging. Two common re-segmentation methods are described in this section.

Combining multiple re-segmentation methods is possible.

Intensity and morphological masks of an ROI ECJF

Conventionally, an ROI consists of a single mask. However, re-segmentation may lead to

exclusion of internal voxels, or divide the ROI into sub-volumes. To avoid undue complexity by

again updating the re-segmented ROI for a more plausible morphology, we define two separate

ROI masks.

The morphological mask (G5KJ) is not re-segmented and maintains the original morphology as

defined by an expert and/or (semi-)automatic segmentation algorithms.

The intensity mask (SEFI) can be re-segmented and will contain only the selected voxels. For
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many feature families, only this is important. However, for morphological and grey level distance

zone matrix (GLDZM) feature families, both intensity and morphological masks are used. A

two-dimensional example is shown in figure 2.4.

Range re-segmentation USB3

Re-segmentation may be performed to remove voxels from the intensity mask that fall outside

of a specified range. An example is the exclusion of voxels with Hounsfield Units indicating air

and bone tissue in the tumour ROI within CT images, or low activity areas in PET images. Such

ranges of intensities of included voxels are usually presented as a closed interval [a, b] or half-open

interval [a,∞), respectively. For arbitrary intensity units (found in e.g. raw MRI data, uncalibrated

microscopy images, and many spatial filters), no re-segmentation range can be provided.

When a re-segmentation range is defined by the user, it needs to be propagated and used for

the calculation of features that require a specified intensity range (e.g. intensity-volume histogram

features) and/or that employs fixed bin size discretisation. Recommendations for the possible

combinations of different imaging intensity definitions, re-segmentation ranges and discretisation

algorithms are provided in Table 2.1.

Intensity outlier filtering 7ACA

ROI voxels with outlier intensities may be removed from the intensity mask. One method

for defining outliers was suggested by Vallières et al. 73 after Collewet et al. 18 . The mean µ and

standard deviation σ of grey levels of voxels assigned to the ROI are calculated. Voxels outside

the range [µ− 3σ, µ+ 3σ] are subsequently excluded from the intensity mask.

2.6 ROI extraction 1OBP

Many feature families require that the ROI is isolated from the surrounding voxels. The ROI

intensity mask is used to extract the image volume to be studied. Excluded voxels are commonly

replaced by a placeholder value, often NaN. This placeholder value may then used to exclude these

voxels from calculations. Voxels included in the ROI mask retain their original intensity.

2.7 Intensity discretisation 4R0B

Discretisation or quantisation of image intensities inside the ROI is often required to make cal-

culation of texture features tractable84, and possesses noise-suppressing properties as well. An

example of discretisation is shown in figure 2.5.

Two approaches to discretisation are commonly used. One involves the discretisation to a fixed

number of bins, and the other discretisation with a fixed bin width. As we will observe, there

is no inherent preference for one or the other method. However, both methods have particular

characteristics (as described below) that may make them better suited for specific purposes. Note

that the lowest bin always has value 1, and not 0. This ensures consistency for calculations of

texture features, where for some features grey level 0 is not allowed .
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ROI volumeROI volume

Discre�sa�on

Figure 2.5 — The image volume contained in the region of interest (ROI) is discretised. Here,
intensities from the original ROI volume were assigned to 3 intensity bins to create a discretised volume.

Fixed bin number K15C

In the fixed bin number method, intensities Xgl are discretised to a fixed number of Ng bins.

It is defined as follows:

Xd,k =


⌊
Ng

Xgl,k−Xgl,min

Xgl,max−Xgl,min

⌋
+ 1 Xgl,k < Xgl,max

Ng Xgl,k = Xgl,max

In short, the intensity Xgl,k of voxel k is corrected by the lowest occurring intensity Xgl,min in the

ROI, divided by the bin width (Xgl,max −Xgl,min) /Ng, and subsequently rounded down to the

nearest integer (floor function).

The fixed bin number method breaks the relationship between image intensity and physiolo-

gical meaning (if any). However, it introduces a normalising effect which may be beneficial when

intensity units are arbitrary (e.g. raw MRI data and many spatial filters), and where contrast

is considered important. Furthermore, as values of many features depend on the number of grey

levels found within a given ROI, the use of a fixed bin number discretisation algorithm allows for a

direct comparison of feature values across multiple analysed ROIs (e.g. across different samples).

Fixed bin size Q3RU

Fixed bin size discretisation is conceptually simple. A new bin is assigned for every intensity

interval with width wb; i.e. wb is the bin width, starting at a minimum Xgl,min. The minimum

intensity may be a user-set value as defined by the lower bound of the re-segmentation range, or

data-driven as defined by the minimum intensity in the ROI Xgl,min = min (Xgl). In all cases, the

method used and/or set minimum value must be clearly reported. However, to maintain consistency

between samples, we strongly recommend to always set the same minimum value for all samples

as defined by the lower bound of the re-segmentation range (e.g. HU of -500 for CT, SUV of 0 for

PET, etc.). In the case that no re-segmentation range may be defined due to arbitrary intensity

units (e.g. raw MRI data and many spatial filters), the use of the fixed bin size discretisation

algorithm is not recommended.

The fixed bin size method has the advantage of maintaining a direct relationship with the

original intensity scale, which could be useful for functional imaging modalities such as PET.

Discretised intensities are computed as follows:

Xd,k =

⌊
Xgl,k −Xgl,min

wb

⌋
+ 1

In short, the minimum intensity Xgl,min is subtracted from intensity Xgl,k in voxel k, and then

divided by the bin width wb. The resulting value is subsequently rounded down to the nearest
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Imaging intensity
units(1)

Re-segmentation
range

FBN(2) FBS(3)

definite

[a, b] 4 4

[a,∞) 4 4

none 4 5

arbitrary none 4 5

Table 2.1 — Recommendations for the possible combinations of different imaging intensity defini-
tions, re-segmentation ranges and discretisation algorithms. Checkmarks (4) represent recommended
combinations of re-segmentation range and discretisation algorithm, whereas crossmarks (5) represent
non-recommended combinations.
(1) PET and CT are examples of imaging modalities with definite intensity units (e.g. SUV and HU, respect-
ively), and raw MRI data of arbitrary intensity units.
(2) Fixed bin number (FBN) discretisation uses the actual range of intensities in the analysed ROI (re-segmented
or not), and not the re-segmentation range itself (when defined).
(3) Fixed bin size (FBS) discretisation uses the lower bound of the re-segmentation range as the minimum set
value. When the re-segmentation range is not or cannot be defined (e.g. arbitrary intensity units), the use of
the FBS algorithm is not recommended.

integer (floor function), and 1 is added to arrive at the discretised intensity.

Other methods

Many other methods and variations for discretisation exist, but are not described in detail here.

Vallières et al. 73 described the use of intensity histogram equalisation and Lloyd-Max algorithms

for discretisation. Intensity histogram equalisation involves redistributing intensities so that the

resulting bins contain a similar number of voxels, i.e. contrast is increased by flattening the

histogram as much as possible34. Histogram equalisation of the ROI imaging intensities can be

performed before any other discretisation algorithm (e.g. FBN, FSB, etc.), and it also requires the

definition of a given number of bins in the histogram to be equalised. The Lloyd-Max algorithm

is an iterative clustering method that seeks to minimise mean squared discretisation errors46,49.

Recommendations

The discretisation method that leads to optimal feature inter- and intra-sample reproducibility

is modality-dependent. Usage recommendations for the possible combinations of different imaging

intensity definitions, re-segmentation ranges and discretisation algorithms are provided in Table

2.1. Overall, the discretisation choice has a substantial impact on intensity distributions, feature

values and reproducibility4,24,37,38,44,57,79.

2.8 Feature calculation

Feature calculation is the final processing step where feature descriptors are used to quantify

characteristics of the ROI. After calculation such features may be used as image biomarkers by

relating them to physiological and medical outcomes of interest. Feature calculation is handled in

full details in the next chapter.

Let us recall that the image processing steps leading to image biomarker calculations can be

performed in many different ways, notably in terms of spatial filtering, segmentation, interpolation

and discretisation parameters. Furthermore, it is plausible that different texture features will

better quantify the characteristics of the ROI when computed using different image processing

parameters. For example, a lower number of grey levels in the discretisation process (e.g. 8 or
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16) may allow to better characterize the sub-regions of the ROI using grey level size zone matrix

(GLSZM) features, whereas grey level co-occurence matrix (GLCM) features may be better modeled

with a higher number of grey levels (e.g. 32 or 64). Overall, these possible differences opens the

door to the optimization of image processing parameters for each different feature in terms of a

specific objective. For the specific case of the optimization of image interpolation and discretisation

prior to texture analysis, Vallières et al.73 have named this process texture optimization. The

authors notably suggested that the texture optimization process could have significant influence

of the prognostic capability of subsequent features. In another study74, the authors constructed

predictive models using textures calculated from all possible combinations of PET and CT images

interpolated at four isotropic resolutions and discretised with two different algorithms and four

numbers of grey levels.



Chapter 3

Image features

In this chapter we will describe a set of quantitative image features. The feature set presented

here largely builds upon the feature sets proposed by Aerts et al. 1 and Hatt et al. 38 , which are

themselves largely derived from earlier works. References to earlier work are provided whenever

they could be identified.

The set of features can be divided into a number of families, of which intensity-based stat-

istical, intensity histogram-based, intensity-volume histogram-based, morphological features, local

intensity, and texture matrix-based features are treated here. All texture matrices are rotation-

ally and translationally invariant. Illumination invariance of texture matrices may be achieved by

particular discretisation schemes, e.g. histogram matching. None of the texture matrices are scale

invariant, a property which can be useful in many (biomedical) applications for scale optimization.

What the presented texture matrices lack, however, is directionality in combination with rotation

invariance. These may be achieved by local binary patterns and steerable filters, which however

fall beyond the scope of the current work. For these and other texture features, see Depeursinge

et al. 23 .

Features are calculated on the base image, as well as images transformed using wavelet or

Gabor filters). To calculate features, it is assumed that an image segmentation mask exists, which

identifies the voxels located within a region of interest (ROI). The ROI itself consists of two masks,

an intensity mask and a morphological mask. These masks may be identical, but not necessarily

so, as described in Section 2.5.

Several feature families require additional image processing steps before feature calculation.

Notably intensity histogram and texture feature families require prior discretisation of intensities

into grey level bins. Other feature families do not require discretisation before calculations. For

more details on image processing, see figure 2.1 in the previous chapter.

Below is an overview table that summarises image processing requirements for the different

feature families.

15
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ROI mask

Feature family count morph. int. discr.

morphology 29 4 4 5

local intensity 2 5 4 5

intensity-based statistics 18 5 4 5

intensity histogram 23 5 4 4

intensity-volume histogram 5 5 4 (4)

grey level co-occurrence matrix 25 5 4 4

grey level run length matrix 16 5 4 4

grey level size zone matrix 16 5 4 4

grey level distance zone matrix 16 4 4 4

neighbourhood grey tone difference matrix 5 5 4 4

neighbouring grey level dependence matrix 17 5 4 4

Table 3.1 — Feature families and required image processing. For each feature family, the number
of features in the document, the required input of a morphological (morph.) and/or intensity (int.)
ROI mask, as well as the requirement of image discretisation (discr.) is provided. Note that the
image discretisation of intensity-volume histogram features is performed differently as compared to
other feature families.

Aside from image processing requirements there are two other concepts which were not explicitly

introduced, but which play an important role for many features: distance and feature aggregation.

In addition, distance weighting for texture features is described. All three are defined below.

Grid distances MPUJ

Grid distance is an important concept that is used by several feature families, particularly

texture features. Grid distances can be measured in several ways. Let m = (mx,my,mz) be the

vector from a center voxel at k = (kx, ky, kz) to a neighbour voxel at k + m. The following norms

(distances) are used:

• `1 norm or Manhattan norm (LIFZ):

‖m‖1 = |mx|+ |my|+ |mz|

• `2 norm or Euclidean norm (G9EV):

‖m‖2 =
√
m2
x +m2

y +m2
z

• `∞ norm or Chebyshev norm (PVMT):

‖m‖∞ = max(|mx|, |my|, |mz|)

An example of how the above norms differ in practice is shown in figure 3.1.
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(a) Manhattan norm (b) Euclidean norm (c) Chebyshev norm

Figure 3.1 — Grid neighbourhoods for distances up to 3 according to Manhattan, Euclidean and
Chebyshev norms. The orange pixel is considered the center pixel. Dark blue pixels have distance
δ = 1, blue pixels δ ≤ 2 and light blue pixels δ ≤ 3 for the corresponding norm.

Feature aggregation 5QB6

Features from some families may be calculated from, e.g. slices. As a consequence, multip le

values for the same feature may be computed. These different values should be combined into a

single value for many common purposes. This process is referred to as feature aggregation. Feature

aggregation methods depend on the family, and are detailed in the family description.

Distance weighting 6CK8

Distance weighting is not a default operation for any of the texture families, but is implemented

in software such as PyRadiomics77. It may for example be used to put more emphasis on local

intensities.
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3.1 Morphological features HCUG

Morphological features describe geometric aspects of a region of interest (ROI), such as area and

volume. Morphological features are based on ROI voxel representations of the volume. Three voxel

representations of the volume are conceivable:

1. The volume is represented by a collection of voxels with each voxel taking up a certain volume

(LQD8).

2. The volume is represented by a voxel point set Xc that consists of coordinates of the voxel

centers (4KW8).

3. The volume is represented by a surface mesh (WRJH).

We use the second representation when the inner structure of the volume is important, and the third

representation when only the outer surface structure is important. The first representation is not

used outside volume approximations because it does not handle partial volume effects at the ROI

edge well, and also to avoid inconsistencies in feature values introduced by mixing representations

in small voxel volumes.

Mesh-based representation WRJH

A mesh-based representation of the outer surface allows consistent evaluation of the surface

volume and area independent of size. Voxel-based representations lead to partial volume effects

and over-estimation of surface area. The surface of the ROI volume is translated into a triangle

mesh using a meshing algorithm. While multiple meshing algorithms exist, we suggest the use of

the Marching Cubes algorithm45,47 because of its widespread availability in different programming

languages and reasonable approximation of the surface area and volume65. In practice, mesh-

derived feature values depend upon the meshing algorithm and small differences may occur between

meshing implementations.

a
b

c

n

Figure 3.2 — Meshing algorithms draw faces and vertices to cover the ROI. One face, spanned
by vertices a, b and c, is highlighted. Moreover, the vertices define the three edges ab = b − a,
bc = c−b and ca = a−c. The face normal n is determined using the right-hand rule, and calculated
as n = (ab× bc) /‖ab × bc‖, i.e. the outer product of edge ab with edge bc, normalised by its
length.

Meshing algorithms use the ROI voxel point set Xc to create a closed mesh. Dependent on the

algorithm, a parameter is required to specify where the mesh should be drawn. A default level

of 0.5 times the voxel spacing is used for marching cube algorithms. Other algorithms require a

so-called isovalue, for which a value of 0.5 can be used since the ROI mask consists of 0 and 1

values, and we want to roughly draw the mesh half-way between voxel centers. Depending on

implementation, algorithms may also require padding of the ROI mask with non-ROI (0) voxels
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to correctly estimate the mesh in places where ROI voxels would otherwise be located at the edge

of the mask.

The closed mesh drawn by the meshing algorithm consists of Nfc triangle faces spanned by

Nvx vertex points. An example triangle face is drawn in Figure 3.2. The set of vertex points is

then Xvx.

The calculation of the mesh volume requires that all faces have the same orientation of the

face normal. Consistent orientation can be checked by the fact that in a regular, closed mesh, all

edges are shared between exactly two faces. Given the edge spanned by vertices a and b, the edge

must be ab = b − a for one face and ba = a − b for the adjacent face. This ensures consistent

application of the right-hand rule, and thus consistent orientation of the face normals. Algorithm

implementations may return consistently orientated faces by default.

ROI morphological and intensity masks

The ROI consists of a morphological and an intensity mask. The morphological mask is used

to calculate many of the morphological features and to generate the voxel point set Xc. Any holes

within the morphological mask are understood to be the result of segmentation decisions, and

thus to be intentional. The intensity mask is used to generate the voxel intensity set Xgl with

corresponding point set Xc,gl. In the benchmark data sets (Chapter 5), the masks are identical for

the digital phantom, but differ due to re-segmentation of the intensity mask.

Aggregating features

By definition, morphological features are calculated in 3D (DHQ4), and not per slice.

3.1.1 Volume RNU0

The volume V is calculated from the ROI mesh as follows85. A tetrahedron is formed by each face

k and the origin. By placing the origin vertex of each tetrahedron at (0, 0, 0), the signed volume

of the tetrahedron is:

Vk =
a · (b× c)

6

Here a, b and c are the vertex points of face k. Depending on the orientation of the normal,

the signed volume may be positive or negative. Hence, the orientation of face normals should be

consistent, e.g. all normals must be either pointing outward or inward. The volume V is then

calculated by summing over the face volumes, and taking the absolute value:

Fmorph.vol = V =

∣∣∣∣∣∣
Nfc∑
k=1

Vk

∣∣∣∣∣∣
For positron emission tomography, volume is equivalent to the metabolically active tumour

volume (MATV).

3.1.2 Approximate volume YEKZ

In clinical practice, volumes are commonly determined by counting voxels. For volumes consisting

of a large number of voxels (1000s), the differences between approximate volume and mesh-based

volume are usually negligible. However for volumes with a low number of voxels (10s to 100s),
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approximate volume will overestimate volume compared to mesh-based volume. It is therefore only

used as a reference feature, and not in the calculation of other morphological features.

Approximate volume is defined as:

Fmorph.approx .vol =

Nv∑
k=1

Vk

Here Nv is the number of voxels in the morphological mask of the ROI, and Vk the volume of voxel

k.

3.1.3 Surface area C0JK

The surface area A is also calculated from the ROI mesh by summing over the triangular face

surface areas1. By definition, the area of face k is:

Ak =
|ab× ac|

2

As in Figure 3.2, edge ab = b − a is the vector from vertex a to vertex b, and edge ac = c − a

the vector from vertex a to vertex c. The total surface area A is then:

Fmorph.area = A =

Nfc∑
k=1

Ak

3.1.4 Surface to volume ratio 2PR5

The surface to volume ratio is given as1:

Fmorph.av =
A

V

3.1.5 Compactness 1 SKGS

Several features (compactness 1 and 2, spherical disproportion, sphericity and asphericity) quantify

the deviation of the ROI volume from a representative spheroid. All these definitions can be derived

from one another. As a results these features are are highly correlated and may thus be redundant.

Compactness 1 1 is a measure for how compact, or sphere-like the volume is. It is defined as:

Fmorph.comp.1 =
V

π1/2A3/2

Some definitions use A2/3 instead of A3/2 1, but this does not lead to dimensionless quantity.

3.1.6 Compactness 2 BQWJ

Compactness 2 1 also quantifies how sphere-like the volume is:

Fmorph.comp.2 = 36π
V 2

A3

By definition Fmorph.comp.1 = 1/6π (Fmorph.comp.2 )
1/2

.
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3.1.7 Spherical disproportion KRCK

Spherical disproportion 1 likewise describes how sphere-like the volume is:

Fmorph.sph.dispr =
A

4πR2
=

A

(36πV 2)
1/3

By definition Fmorph.sph.dispr = (Fmorph.comp.2 )
−1/3

.

3.1.8 Sphericity QCFX

Sphericity 1 is a further measure to describe how sphere-like the volume is:

Fmorph.sphericity =

(
36πV 2

)1/3
A

By definition Fmorph.sphericity = (Fmorph.comp.2 )
1/3

.

3.1.9 Asphericity 25C7

Asphericity 6 also describes how much the ROI deviates from a perfect sphere, with perfectly

spherical volumes having an asphericity of 0. Asphericity is defined as:

Fmorph.asphericity =

(
1

36π

A3

V 2

)1/3

− 1

By definition Fmorph.asphericity = (Fmorph.comp.2 )
−1/3 − 1

3.1.10 Centre of mass shift KLMA

The distance between the ROI volume centroid and the intensity-weighted ROI volume is an

abstraction of the spatial distribution of low/high intensity regions within the ROI. Let Nv,m be

the number of voxels in the morphological mask. The ROI volume centre of mass is calculated

from the morphological voxel point set Xc as follows:

−−−→
CoMgeom =

1

Nv,m

Nv,m∑
k=1

~Xc,k

The intensity-weighted ROI volume is based on the intensity mask. The position of each voxel

centre in the intensity mask voxel set Xc,gl is weighted by its corresponding intensity Xgl. There-

fore, with Nv,gl the number of voxels in the intensity mask:

−−−→
CoMgl =

∑Nv,gl

k=1 Xgl,k
~Xc,gl,k∑Nv,gl

k=1 Xgl,k

The distance between the two centres of mass is then:

Fmorph.com = ||
−−−→
CoMgeom −

−−−→
CoMgl||2
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3.1.11 Maximum 3D diameter L0JK

The maximum 3D diameter 1 is the distance between the two most distant vertices in the ROI

mesh vertex set Xvx:

Fmorph.diam = max
(
|| ~Xvx,k1 − ~Xvx,k2 ||2

)
, k1 = 1, . . . , N k2 = 1, . . . , N

A practical way of determining the maximum 3D diameter is to first construct the convex hull

of the ROI mesh. The convex hull vertex set Xvx,convex is guaranteed to contain the two most

distant vertices of Xvx. This significantly reduces the computational cost of calculating distances

between all vertices. Despite the remaining O(n2) cost of calculating distances between different

vertices, Xvx,convex is usually considerably smaller in size than Xvx. Moreover, the convex hull is

later used for the calculation of other morphological features (3.1.25-3.1.26).

3.1.12 Major axis length TDIC

Principal component analysis (PCA) can be used to determine the main orientation of the ROI63.

On a three dimensional object, PCA yields three orthogonal eigenvectors {e1, e2, e3} and three

eigenvalues (λ1, λ2, λ3). These eigenvalues and eigenvectors geometrically describe a triaxial el-

lipsoid. The three eigenvectors determine the orientation of the ellipsoid, whereas the eigenvalues

provide a measure of how far the ellipsoid extends along each eigenvector. Several features make use

of principal component analysis, namely major, minor and least axis length, elongation, flatness,

and approximate enclosing ellipsoid volume and area density.

The eigenvalues can be ordered so that λmajor ≥ λminor ≥ λleast correspond to the major,

minor and least axes of the ellipsoid respectively. The semi-axes lengths a, b and c for the major,

minor and least axes are then 2
√
λmajor , 2

√
λminor and 2

√
λleast respectively. The major axis

length is twice the semi-axis length a, determined using the largest eigenvalue obtained by PCA

on the point set of voxel centers Xc
39:

Fmorph.pca.major = 2a = 4
√
λmajor

3.1.13 Minor axis length P9VJ

The minor axis length of the ROI provides a measure of how far the volume extends along the

second largest axis. The minor axis length is twice the semi-axis length b, determined using the

second largest eigenvalue obtained by PCA, as described in Section 3.1.12:

Fmorph.pca.minor = 2b = 4
√
λminor

3.1.14 Least axis length 7J51

The least axis is the axis along which the object is least extended. The least axis length is twice

the semi-axis length c, determined using the smallest eigenvalue obtained by PCA, as described in

Section 3.1.12:

Fmorph.pca.least = 2c = 4
√
λleast
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3.1.15 Elongation Q3CK

The ratio of the major and minor principal axis lengths could be viewed as the extent to which a

volume is longer than it is wide, i.e. is eccentric. For computational reasons, we express elongation

as an inverse ratio. 1 is thus completely non-elongated, e.g. a sphere, and smaller values express

greater elongation of the ROI volume.

Fmorph.pca.elongation =

√
λminor
λmajor

3.1.16 Flatness N17B

The ratio of the major and least axis lengths could be viewed as the extent to which a volume is

flat relative to its length. For computational reasons, we express flatness as an inverse ratio. 1 is

thus completely non-flat, e.g. a sphere, and smaller values express objects which are increasingly

flatter.

Fmorph.pca.flatness =

√
λleast
λmajor

3.1.17 Volume density - axis-aligned bounding box PBX1

Volume density is the fraction of the ROI volume and a comparison volume. Here the comparison

volume is that of the axis-aligned bounding box (AABB) of the ROI mesh vertex set Xvx or the

ROI mesh convex hull vertex set Xvx,convex. Both vertex sets generate an identical bounding box,

which is the smallest box enclosing the vertex set, and aligned with the axes of the reference frame.

Fmorph.v .dens.aabb =
V

Vaabb

This feature is also called extent 26,63.

3.1.18 Area density - axis-aligned bounding box R59B

Conceptually similar to the volume density - axis-aligned bounding box feature, area density con-

siders the ratio of the ROI surface area and the surface area Aaabb of the axis-aligned bounding

box enclosing the ROI mesh vertex set Xvx
76. The bounding box is identical to the one used in

the volume density - axis-aligned bounding box feature. Thus:

Fmorph.a.dens.aabb =
A

Aaabb

3.1.19 Volume density - oriented minimum bounding box ZH1A

The volume of an axis-aligned bounding box is generally not the smallest obtainable volume en-

closing the ROI. By orienting the box along a different set of axes, a smaller enclosing volume may

be attainable. The oriented minimum bounding box of the ROI mesh vertex set Xvx or Xvx,convex

encloses the vertex set and has the smallest possible volume. A 3D rotating callipers technique

was devised by O’Rourke 55 to derive the oriented minimum bounding box. Due to computational

complexity of the rotating callipers technique, the oriented minimum bounding box is commonly
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approximated at lower complexity, see e.g. Barequet and Har-Peled 10 and Chan and Tan 14 . Thus:

Fmorph.v .dens.ombb =
V

Vombb

Here Vombb is the volume of the oriented minimum bounding box.

3.1.20 Area density - oriented minimum bounding box IQYR

The area density is estimated as:

Fmorph.a.dens.ombb =
A

Aombb

Here Aombb is the surface area of the same bounding box as calculated for the volume density -

oriented minimum bounding box feature.

3.1.21 Volume density - approximate enclosing ellipsoid 6BDE

The eigenvectors and eigenvalues from PCA of the ROI voxel center point set Xc can be used

to describe an ellipsoid approximating the point cloud50. The volume of an ellipsoid is Vaee =

4π a b c/3, with a, b, and c being the lengths of the ellipsoid’s semi-principal axes, see Section

3.1.12. The volume density is then:

Fmorph.v .dens.aee =
3V

4πabc

3.1.22 Area density - approximate enclosing ellipsoid RDD2

The surface area of an ellipsoid can generally not be evaluated in an elementary form. However,

it is possible to approximate the surface using an infinite series. We use the same semi-principal

axes as for the volume density - approximate ellipsoid feature and define:

Aaee (a, b, c) = 4π a b
∞∑
ν=0

(αβ)
ν

1− 4ν2
Pν

(
α2 + β2

2αβ

)

Here α =
√

1− b2/a2 and β =
√

1− c2/a2 are eccentricities of the ellipsoid and Pν is the Legendre

polynomial function for degree ν. Though infinite, the series converges, and calculation may be

stopped early. Gains in precision past ν = 20 are limited, and as a default we stop calculations at

this polynomial degree.

The area density is then approximated as:

Fmorph.a.dens.aee =
A

Aaee

3.1.23 Volume density - minimum volume enclosing ellipsoid SWZ1

The approximate ellipsoid may not enclose the ROI or be the smallest enclosing ellipsoid. The

minimum volume enclosing ellipsoid is generally approximated to make calculation more feasible.

Various algorithms have been described, e.g.2,70, which are usually elaborations on Khachiyan’s

barycentric coordinate descent method40.
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The minimum volume enclosing ellipsoid (MVEE) encloses the ROI mesh vertex set Xvx, and

by definition Xvx,convex as well. Use of the convex mesh set Xvx,convex is recommended due to

its sparsity compared to the full vertex set. The volume of the MVEE is defined by its semi-axes

lengths Vmvee = 4π a b c/3. Then:

Fmorph.v .dens.mvee =
V

Vmvee

For Khachiyan’s barycentric coordinate descent-based methods we use a default tolerance τ =

0.001 as stopping criterion.

3.1.24 Area density - minimum volume enclosing ellipsoid BRI8

The surface area of an ellipsoid does not have a general elementary form, but should be approx-

imated as noted in Section 3.1.22. Let the approximated surface area of the MVEE be Amvee .

Then:

Fmorph.a.dens.mvee =
A

Amvee

3.1.25 Volume density - convex hull R3ER

The convex hull encloses ROI mesh vertex set Xvx and consists of the vertex set Xvx,convex and

corresponding faces, see section 3.1.11. The volume of the ROI mesh convex hull set Vconvex is

calculated as for the volume feature (3.1.1). The volume density can then be calculated as follows:

Fmorph.v .dens.conv .hull =
V

Vconvex

This feature is also called solidity 26,63.

3.1.26 Area density - convex hull 7T7F

The area of the convex hull Aconvex is the sum of the areas of the faces of the convex hull, as in

the calculation of the area feature (section 3.1.3). The convex hull is identical to the one used in

the volume density - convex hull feature. Then:

Fmorph.a.dens.conv .hull =
A

Aconvex

3.1.27 Integrated intensity 99N0

Integrated intensity is the average grey level multiplied by the volume. In the context of 18F-FDG-

PET, this feature is called total lesion glycolysis 72. Thus:

Fmorph.integ.int = V
1

Nv,gl

Nv,gl∑
k=1

Xgl,k

Nv,gl is the number of voxels in the ROI intensity mask.
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3.1.28 Moran’s I index N365

Moran’s I index is an indicator of spatial autocorrelation20,51. It is defined as:

Fmorph.moran.i =
Nv,gl∑Nv,gl

k1=1

∑Nv,gl

k2=1 wk1k2

∑Nv,gl

k1=1

∑Nv,gl

k2=1 wk1k2 (Xgl,k1 − µ) (Xgl,k2 − µ)∑Nv,gl

k=1 (Xgl,k − µ)
2

, k1 6= k2

As before Nv,gl is the number of voxels in the ROI intensity mask, µ is the mean of Xgl and wk1k2
is a weight factor, equal to the inverse Euclidean distance between voxels k1 and k2 of the point set

Xc,gl of the ROI intensity mask19. Values of Moran’s I close to 1.0, 0.0 and -1.0 indicate high spatial

autocorrelation, no spatial autocorrelation and high spatial anti-autocorrelation, respectively.

Note that for an ROI containing many voxels, calculating Moran’s I index may be computa-

tionally expensive due to O(n2) behaviour. Approximation by repeated subsampling of the ROI

may be required to make the calculation tractable, at the cost of accuracy.

3.1.29 Geary’s C measure NPT7

Geary’s C measure assesses spatial autocorrelation, similar to Moran’s I index20,30. In contrast

to Moran’s I index, Geary’s C measure directly assesses grey level differences between voxels and

is more sensitive to local spatial autocorrelation. This measure is defined as:

Fmorph.geary.c =
Nv,gl − 1

2
∑Nv,gl

k1=1

∑Nv,gl

k2=1 wk1k2

∑Nv,gl

k1=1

∑Nv,gl

k2=1 wk1k2 (Xgl,k1 −Xgl,k2)
2∑Nv,gl

k=1 (Xgl,k − µ)
2

, k1 6= k2

As with Moran’s I, Nv,gl is the number of voxels in the ROI intensity mask, µ is the mean of Xgl

and wk1k2 is a weight factor, equal to the inverse Euclidean distance between voxels k1 and k2 of

the ROI voxel point set Xc,gl
19.

Just as Moran’s I, Geary’s C measure exhibits O(n2) behaviour and an approximation scheme

may be required to make calculation feasible for large ROIs.
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3.2 Local intensity features 9ST6

Voxel intensities within a defined neighbourhood around a center voxel are used to compute local

intensity features. Unlike many other feature sets, local features do not draw solely on intensities

within the ROI. While only voxels within the ROI intensity map are used as a center voxel, the

corresponding local neighbourhood draws upon all voxels regardless of being in an ROI.

Aggregating features

By definition, local intensity features are calculated in 3D (DHQ4), and not per slice.

3.2.1 Local intensity peak VJGA

The local intensity peak was originally devised for reducing variance in determining standardised

uptake values81. It is defined as the mean intensity in a 1 cm3 spherical volume (in world co-

ordinates), which is centered on the voxel with the maximum intensity level in the ROI intensity

mask28.

To calculate Floc.peak .local , we first select all the voxels with centers within a radius r =(
3

4π

)1/3 ≈ 0.62 cm of the center of the maximum intensity voxel. Subsequently, the mean in-

tensity of the selected voxels, including the center voxel, are calculated.

In case the maximum intensity is found in multiple voxels within the ROI, local intensity peak

is calculated for each of these voxels, and the highest local intensity peak is chosen.

3.2.2 Global intensity peak 0F91

The global intensity peak feature Floc.peak .global is similar to the local intensity peak 28. However,

instead of calculating the mean intensity for the voxel(s) with the maximum intensity, the mean

intensity is calculated within a 1 cm3 neighbourhood for every voxel in the ROI intensity mask.

The highest intensity peak value is then selected.

Calculation of the global intensity peak feature may be accelerated by construction and applic-

ation of an appropriate spatial spherical mean convolution filter, due to the convolution theorem.

In this case one would first construct an empty 3D filter that will fit a 1 cm3 sphere. Within this

context, the filter voxels may be represented by a point set, akin to Xc in section 3.1. Euclidean

distances in world spacing between the central voxel of the filter and every remaining voxel are

computed. If this distance lies within radius r =
(

3
4π

)1/3 ≈ 0.62 the corresponding voxel receives

a label 1, and 0 otherwise. Subsequent summation of the voxel labels yields Ns, the number of

voxels within the 1 cm3 sphere. The filter then becomes a spherical mean filter by dividing the

labels by Ns.
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3.3 Intensity-based statistical features UHIW

The intensity-based statistical features describe how grey levels within the region of interest (ROI)

are distributed. The features in this set do not require discretisation, and may be used to describe

a continuous intensity distribution. Intensity-based statistical features are not meaningful if the

intensity scale is arbitrary.

The set of intensities of the Nv voxels included in the ROI intensity mask is denoted as Xgl =

{Xgl,1, Xgl,2, . . . , Xgl,Nv}.

Aggregating features

We recommend calculating intensity-based statistical features using the 3D volume (DHQ4).

Computing features per slice and subsequently averaging (3IDG) is not recommended.

3.3.1 Mean Q4LE

The mean grey level of Xgl is calculated as:

Fstat.mean =
1

Nv

Nv∑
k=1

Xgl,k

3.3.2 Variance ECT3

The grey level variance of Xgl is defined as:

Fstat.var =
1

Nv

Nv∑
k=1

(Xgl,k − µ)
2

3.3.3 Skewness KE2A

The skewness of the grey level distribution of Xgl is defined as:

Fstat.skew =
1
Nv

∑Nv

k=1 (Xgl,k − µ)
3(

1
Nv

∑Nv

k=1 (Xgl,k − µ)
2
)3/2

Here µ = Fstat.mean . If the grey level variance Fstat.var = 0, Fstat.skew = 0.

3.3.4 Kurtosis IPH6

Kurtosis, or technically excess kurtosis, is a measure of peakedness in the grey level distribution

Xgl:

Fstat.kurt =
1
Nv

∑Nv

k=1 (Xgl,k − µ)
4(

1
Nv

∑Nv

k=1 (Xgl,k − µ)
2
)2 − 3

Here µ = Fstat.mean . Note that kurtosis is corrected by a Fisher correction of -3 to center it on 0

for normal distributions. If the grey level variance Fstat.var = 0, Fstat.kurt = 0.
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3.3.5 Median Y12H

The median Fstat.median is the sample median of Xgl.

3.3.6 Minimum grey level 1GSF

The minimum grey level Fstat.min is equal to the lowest grey level present in Xgl.

3.3.7 10th percentile QG58

P10 is the 10th percentile of Xgl. P10 is more robust to grey level outliers than the minimum grey

level and is defined as Fstat.P10 .

3.3.8 90th percentile 8DWT

P90 is the 90th percentile of Xgl. P90 is more robust to grey level outliers than the maximum grey

level and is defined as Fstat.P90 .

3.3.9 Maximum grey level 84IY

The maximum grey level Fstat.max is equal to the highest grey level present in Xgl.

3.3.10 Interquartile range SALO

The interquartile range (IQR) of Xgl is defined as:

Fstat.iqr = P75 − P25

P25 and P75 are the 25th and 75th percentiles of Xgl, respectively.

3.3.11 Range 2OJQ

The range of grey levels is defined as:

Fstat.range = max(Xgl)−min(Xgl)

3.3.12 Mean absolute deviation 4FUA

Mean absolute deviation is a measure of dispersion from the mean of Xgl:

Fstat.mad =
1

Nv

Nv∑
k=1

|Xgl,k − µ|

Here µ = Fstat.mean .
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3.3.13 Robust mean absolute deviation 1128

The mean absolute deviation feature may be influenced by outliers. To increase robustness, the

set of grey levels can be restricted to those which lie closer to the center of the distribution. Let

Xgl,10−90 = {x ∈ Xgl|P10 (Xgl) ≤ x ≤ P90 (Xgl)}

Thus Xgl,10−90 is the set of Nv,10−90 ≤ Nv voxels in Xgl whose grey levels are equal to, or lie

between, the values corresponding to the 10th and 90th percentiles of Xgl. The robust mean

absolute deviation is then:

Fstat.rmad =
1

Nv,10−90

Nv,10−90∑
k=1

∣∣Xgl,10−90,k −Xgl,10−90

∣∣
Xgl,10−90 denotes the sample mean of Xgl,10−90.

3.3.14 Median absolute deviation N72L

Median absolute deviation is similar in concept to mean absolute deviation, but measures dispersion

from the median instead of mean. Thus:

Fstat.medad =
1

Nv

Nv∑
k=1

|Xgl,k −M |

Here, median M = Fstat.median .

3.3.15 Coefficient of variation 7TET

The coefficient of variation measures the dispersion of the Xgl distribution. It is defined as:

Fstat.cov =
σ

µ

Here σ = Fstat.var
1/2 and µ = Fstat.mean are the standard deviation and mean of the grey level

distribution, respectively.

3.3.16 Quartile coefficient of dispersion 9S40

The quartile coefficient of dispersion is a more robust alternative to coefficient of variance. It is

defined as:

Fstat.qcod =
P75 − P25

P75 + P25

P25 and P75 are the 25th and 75th percentile of Xgl, respectively.

3.3.17 Energy N8CA

Energy 1 of Xgl is defined as:

Fstat.energy =

Nv∑
k=1

X2
gl,k
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3.3.18 Root mean square 5ZWQ

The root mean square feature1, which also called the quadratic mean, of Xgl is defined as:

Fstat.rms =

√∑Nv

k=1X
2
gl,k

Nv
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3.4 Intensity histogram features ZVCW

An intensity histogram is generated by discretising the original set of grey levels Xgl into grey level

bins. Approaches to discretisation are described in Section 2.7.

Let Xd = {Xd,1, Xd,2, . . . , Xd,Nv
} be the set of Ng discretised grey levels of the Nv voxels in

the ROI intensity mask. Let H =
{
n1, n2, . . . , nNg

}
be the histogram with frequency count ni of

each discretised grey level i in Xd. The occurrence probability pi for each grey level bin i is then

approximated as pi = ni/Nv.

Aggregating features

We recommend calculating intensity histogram features using the 3D volume (DHQ4). Comput-

ing features per slice and subsequently averaging (3IDG) is not recommended.

3.4.1 Intensity histogram mean X6K6

The mean 1 of Xd is calculated as:

Fih.mean =
1

Nv

Nv∑
k=1

Xd,k

An equivalent formulation is:

Fih.mean =

Ng∑
i=1

i pi

3.4.2 Intensity histogram variance CH89

The variance 1 of Xd is defined as:

Fih.var =
1

Nv

Nv∑
k=1

(Xd,k − µ)
2

Here µ = Fih.mean . This formulation is equivalent to:

Fih.var =

Ng∑
i=1

(i− µ)
2
pi

3.4.3 Intensity histogram skewness 88K1

The skewness 1 of Xd is defined as:

Fih.skew =
1
Nv

∑Nv

k=1 (Xd,k − µ)
3(

1
Nv

∑Nv

k=1 (Xd,k − µ)
2
)3/2

Here µ = Fih.mean . This formulation is equivalent to:

Fih.skew =

∑Ng

i=1 (i− µ)
3
pi(∑Ng

i=1 (i− µ)
2
pi

)3/2
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If the discretised grey level variance Fih.var = 0, Fih.skew = 0.

3.4.4 Intensity histogram kurtosis C3I7

Kurtosis 1, or technically excess kurtosis, is calculated as measure of peakedness of the distribution

Xd:

Fih.kurt =
1
Nv

∑Nv

k=1 (Xd,k − µ)
4(

1
Nv

∑Nv

k=1 (Xd,k − µ)
2
)2 − 3

Here µ = Fih.mean . The alternative, but equivalent, formulation is:

Fih.kurt =

∑Ng

i=1 (i− µ)
4
pi(∑Ng

i=1 (i− µ)
2
pi

)2 − 3

Note that kurtosis is corrected by a Fisher correction of -3 to center kurtosis on 0 for normal

distributions. If the discretised grey level Fih.var = 0, Fih.kurt = 0.

3.4.5 Intensity histogram median WIFQ

The median Fih.median is the sample median of Xd
1.

3.4.6 Intensity histogram minimum grey level 1PR8

The minimum grey level 1 Fih.min is equal to the lowest discretised grey level present in Xd. For

fixed bin number discretisation Fih.min = 1 by definition, but it may deviate for fixed bin size

discretisation.

3.4.7 Intensity histogram 10th percentile GPMT

P10 is the 10th percentile of Xd and is defined as Fih.P10 .

3.4.8 Intensity histogram 90th percentile OZ0C

P90 is the 90th percentile of Xd and is defined as Fih.P90 .

3.4.9 Intensity histogram maximum grey level 3NCY

The maximum grey level 1 Fih.max is equal to the highest discretised grey level present in Xd.

Fih.max = Ng by definition.

3.4.10 Intensity histogram mode AMMC

The mode of Xd Fih.mode is the most common discretised grey level present, i.e. i for which count

ni is maximal. The mode may not be uniquely defined. When multiple bins contain the highest

grey level count, the bin closest to the histogram mean is chosen as Fih.mode . In pathological cases

with two such bins equidistant to the mean, the bin to the left of the mean is selected.
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3.4.11 Intensity histogram interquartile range WR0O

The interquartile range (IQR) of Xd is defined as:

Fih.iqr = P75 − P25

P25 and P75 are the 25th and 75th percentile of Xd, respectively. The interquartile range of Xd is

always an integer.

3.4.12 Intensity histogram range 5Z3W

The range of grey levels1 in the histogram is defined as:

Fih.range = max(Xd)−min(Xd)

The intensity histogram range is therefore equal to the width of the histogram. For fixed bin

number discretisation Fih.range = Ng by definition.

3.4.13 Intensity histogram mean absolute deviation D2ZX

The mean absolute deviation 1 is a measure of dispersion from the mean of Xd:

Fih.mad =
1

Nv

Nv∑
i=1

|Xd,i − µ|

Here µ = Fih.mean .

3.4.14 Intensity histogram robust mean absolute deviation WRZB

Intensity histogram mean absolute deviation may be affected by outliers. To increase robustness,

the set of discretised grey levels under consideration can be restricted to those which are closer to

the center of the distribution. Let

Xd,10−90 = {x ∈ Xd|P10 (Xd) ≤ x ≤ P90 (Xd)}

In short, Xd,10−90 is the set of Nv,10−90 ≤ Nv voxels in Xd whose discretised grey levels are equal

to, or lie between, the values corresponding to the 10th and 90th percentiles of Xd. The robust

mean absolute deviation is then:

Fih.rmad =
1

Nv,10−90

Nv,10−90∑
k=1

∣∣Xd,10−90,k −Xd,10−90

∣∣
Xd,10−90 denotes the sample mean of Xd,10−90.

3.4.15 Intensity histogram median absolute deviation 4RNL

Histogram median absolute deviation is conceptually similar to histogram mean absolute deviation,

but measures dispersion from the median instead of mean. Thus:

Fih.medad =
1

Nv

Nv∑
k=1

|Xd,k −M |
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Here, median M = Fih.median .

3.4.16 Intensity histogram coefficient of variation CWYJ

The coefficient of variation measures the dispersion of the histogram. It is defined as:

Fih.cov =
σ

µ

Here σ = Fih.var
1/2 and µ = Fih.mean are the standard deviation and mean of the discretised grey

level distribution, respectively.

3.4.17 Intensity histogram quartile coefficient of dispersion SLWD

The quartile coefficient of dispersion is a more robust alternative to coefficient of variance. It is

defined as:

Fih.qcod =
P75 − P25

P75 + P25

P25 and P75 are the 25th and 75th percentile of Xd, respectively.

3.4.18 Intensity histogram entropy TLU2

Entropy 1 is an information-theoretic concept that gives a metric for the information contained

within Xd. The particular metric used is Shannon entropy, which is defined as:

Fih.entropy = −
Ng∑
i=1

pi log2 pi

3.4.19 Intensity histogram uniformity BJ5W

Uniformity 1 of Xd is defined as:

Fih.uniformity =

Ng∑
i=1

p2
i

Note that this feature is sometimes also referred to as energy.

3.4.20 Maximum histogram gradient 12CE

The histogram gradient H′ of intensity histogram H can be calculated as:

H ′i =


n2 − n1 i = 1

(ni+1 − ni−1) /2 1 < i < Ng

nNg
− nNg−1 i = Ng

Histogram H should be non-sparse, i.e. bins where ni = 0 should not be omitted. Ostensibly,

the histogram gradient can be calculated in different ways. The method above has the advantages

of being easy to implement and leading to a gradient H′ with same size as H. This helps avoid
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ambiguity concerning correspondence between the discretised grey level and the bin. The maximum

histogram gradient 76 is:

Fih.max .grad = max (H′)

3.4.21 Maximum histogram gradient grey level 8E6O

The maximum histogram gradient grey level 76 Fih.max .grad.gl is the discretised grey level corres-

ponding to the maximum histogram gradient, i.e. i for which H′ was maximal.

3.4.22 Minimum histogram gradient VQB3

The minimum histogram gradient 76 is:

Fih.min.grad = min (H′)

3.4.23 Minimum histogram gradient grey level RHQZ

The minimum histogram gradient grey level 76 Fih.min.grad.gl is the discretised grey level corres-

ponding to the minimum histogram gradient, i.e. i for which H′ was minimal.
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3.5 Intensity-volume histogram features P88C

The (cumulative) intensity-volume histogram (IVH) of the voxel grey level set Xgl of the ROI

intensity mask describes the relationship between discretised grey level i and the fraction of the

volume containing at least grey level i, ν 26. Dependent on the imaging modality, the calculation of

IVH features requires discretising Xgl to generate a discretised grey level voxel set Xd,gl. Moreover,

the total range G of discretised grey level values with discretisation interval wd should be provided

or determined. The total range determines the range of discretised grey level values to be included

in the IVH, whereas the discretisation interval determines the difference between adjacent discret-

ised grey levels in the IVH. For images with definite intensity units, the discretisation interval

matches the bin width for discretisation. However, it differs for images with arbitrary intensity

units. For consistency of IVH metric comparisons, it is recommended to use a range G as defined

by the re-segmentation range whenever it is possible for imaging modalities with definite intensity

units (both discrete and continuous cases).

Definite intensity units – discrete case

Some imaging modalities by default generate voxels with calibrated, discrete intensities – for

example CT. In this case, the discretised ROI voxel set Xd,gl = Xgl (i.e. no discretisation required).

If a re-segmentation range is provided (see Section 2.5), the total range G is equal to the re-

segmentation range. In the case of a half-open re-segmentation range, the upper limit of the range

is max(Xgl). When no range is provided, G = [min(Xgl),max(Xgl)]. The discretisation interval

is wd = 1.

Definite intensity units – continuous case

Imaging with calibrated, continuous intensities such as PET requires discretisation to determine

the IVH, while preserving the quantitative intensity information. The use of a fixed bin size

discretisation method is thus recommended, see Section 2.7. Proper use of this method requires to

set the minimum grey level Xgl,min, the maximum grey level Xgl,max and the bin width wb prior

to discretisation. If a re-segmentation range is defined (see Section 2.5), Xgl,min is set to the lower

bound of the re-segmentation range andXgl,max to the upper bound; otherwise Xgl,min = min(Xgl)

and Xgl,max = max(Xgl) (i.e. the minimum and maximum grey levels in the imaging volume prior

to discretisation). The bin width wb is modality dependent, but should be small relative to the

intensity range, e.g. 0.10 SUV for 18F-FDG-PET.

Next, fixed bin size discretisation produces the voxel set Xd of bin numbers, which needs to be

converted to bin centers in order to maintain a direct relationship with the original intensities. We

thus replace bin numbers Xd with the intensity corresponding to the bin center:

Xd,gl = Xgl,min + (Xd − 0.5)wb

The total range is then G = [Xgl,min + 0.5wb, Xgl,max − 0.5wb]. In this case, the discretisation

interval matches the bin width, i.e. wd = wb.

Arbitrary intensity units

Some imaging modalities such as raw MRI data have arbitrary intensities. In such cases, a

fixed bin number discretisation method with Ng = 1000 bins is recommended, see Section 2.7.

The discretisation bin width is wb = (Xgl,max −Xgl,min) /Ng, with Xgl,max = max (Xgl) and

Xgl,min = min (Xgl), as re-segmentation ranges generally cannot be provided for non-calibrated

intensities. The fixed bin number discretisation produces the voxel set Xd ∈ {1, 2, . . . , Ng}. Because

of the lack of calibration, Xd,gl = Xd, and consequentially the discretisation interval is wd = 1 and

the total range is G = [1, Ng]
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i γ ν

1 0.0 1.000

2 0.2 0.324

3 0.4 0.324

4 0.6 0.311

5 0.8 0.095

6 1.0 0.095

Table 3.2 — Example intensity-volume histogram evaluated at discrete grey levels i of the digital
phantom. The total range G = [1, 6], with discretisation interval w = 1. Thus γ is the fractional grey
level and ν is the corresponding volume fraction that contains grey level i or greater.

Calculating the IV histogram

We use Xd,gl to calculate fractional volumes and fractional grey levels.

As voxels for the same image stack generally all have the same dimensions, we may define

fractional volume ν for discrete grey level i in the range G with discretisation interval wd as:

νi = 1− 1

Nv

Nv∑
k=1

[Xd,gl,k < i]

Here [. . .] is an Iverson bracket, yielding 1 if the condition is true and 0 otherwise. In essence, we

count the voxels containing a discretised grey level smaller than i, divide by the total number of

voxels, and then subtract this volume fraction to find νi.

The grey level fraction γ for discrete grey level i in the range G with discretisation interval wd
is calculated as:

γi =
i−min (G)

max (G)−min (G)

Note that we evaluate grey levels that may actually be absent in Xd,gl. For the digital phantom of

the benchmark data sets (Chapter 5) grey levels 2 and 5 are absent, but still evaluated to determine

both the fractional volume and the grey level fraction. An example IVH for the digital phantom

is shown in Table 3.2.

Aggregating features

We recommend calculating intensity-volume histogram features using the 3D volume (DHQ4).

Computing features per slice and subsequently averaging (3IDG) is not recommended.

3.5.1 Volume at intensity fraction BC2M

The volume at intensity fraction Vx is the largest volume fraction ν that has an intensity fraction γ

of at least x%. This differs from conceptually similar dose-volume histograms used in radiotherapy

planning, where V10 would indicate the volume fraction receiving at least 10 Gy planned dose. El

Naqa et al. 26 defined both V10 and V90 as features. In the context of this work, these two features

are defined as Fivh.V10 and Fivh.V90 , respectively.
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3.5.2 Intensity at volume fraction GBPN

The intensity at volume fraction Ix is the minimum discretised grey level i present in at most x%

of the volume. El Naqa et al. 26 defined both I10 and I90 as features. In the context of this work,

these two features are defined as Fivh.I10 and Fivh.I90 , respectively.

3.5.3 Volume fraction difference between intensity fractions DDTU

This feature is the difference between the volume fractions at two different intensity fractions, e.g.

V10 − V90
26. In the context of this work, this feature is defined as Fivh.V10minusV90 .

3.5.4 Intensity fraction difference between volume fractions CNV2

This feature is the difference between discretised grey levels at two different fractional volumes,

e.g. I10 − I90
26. In the context of this work, this feature is defined as Fivh.I10minusI90 .

3.5.5 Area under the IVH curve 9CMM

The area under the IVH curve Fivh.auc was defined by van Velden et al. 78 . The area under the

IVH curve can be approximated by calculating the Riemann sum using the trapezoidal rule. Note

that if there is only one grey level in the ROI, the area under the IVH curve Fivh.auc = 0.
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3.6 Grey level co-occurrence based features LFYI

In image analysis, texture is one of the defining sets of features. Texture features were originally

designed to assess surface texture in 2D images. Texture analysis is however not restricted to

2D slices and can be extended to 3D objects. Image intensities are generally discretised before

calculation of texture features, see Section 2.7.

The grey level co-occurrence matrix (GLCM) is a matrix that expresses how combinations of dis-

cretised grey levels of neighbouring pixels, or voxels in a 3D volume, are distributed along one of the

image directions. Generally, the neighbourhood for GLCM is a 26-connected neighbourhood in 3D

and a 8-connected neighbourhood in 2D. Thus, in 3D there are 13 unique direction vectors within

the neighbourhood for Chebyshev distance δ = 1, i.e. (0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 1, 1), (0, 1,−1),

(1, 0, 1), (1, 0,−1), (1, 1, 0), (1,−1, 0), (1, 1, 1), (1, 1,−1), (1,−1, 1) and (1,−1,−1), whereas in 2D

the direction vectors are (1, 0, 0), (1, 1, 0), (0, 1, 0) and (−1, 1, 0).

A GLCM is calculated for each direction vector, as follows. Let Mm be the Ng ×Ng grey level

co-occurrence matrix, with Ng the number of discretised grey levels present in the ROI intensity

mask, and m the particular direction vector. Element (i, j) of the GLCM contains the frequency at

which combinations of discretised grey levels i and j occur in neighbouring voxels along direction

m+ = m and along direction m− = −m. Then, Mm = Mm+ + Mm− = Mm+ + MT
m+

36. As a

consequence the GLCM matrix Mm is symmetric. An example of the calculation of a GLCM is

shown in Table 3.3. Corresponding grey level co-occurrence matrices for each direction are shown

in Table 3.4.

1 2 2 3

1 2 3 3

4 2 4 1

4 1 2 3

(a) Grey levels

j

i

0 3 0 0

0 1 3 1

0 0 1 0

2 1 0 0

(b) Mm+=→

j

i

0 0 0 2

3 1 0 1

0 3 1 0

0 1 0 0

(c) Mm−=←

Table 3.3 — Grey levels (a) and corresponding grey level co-occurrence matrices for the 0◦ (b) and
180◦ directions (c). In vector notation these directions are m+ = (1, 0) and m− = (−1, 0). To
calculate the symmetrical co-occurrence matrix Mm both matrices are summed by element.

GLCM features rely on the probability distribution for the elements of the GLCM. Let us

consider Mm=(1,0) from the example, as shown in Table 3.5. We derive a probability distribution

for grey level co-occurrences, Pm, by normalising Mm by the sum of its elements. Each element

pij of Pm is then the joint probability of grey levels i and j occurring in neighbouring voxels

along direction m. Then pi. =
∑Ng

j=1 pij is the row marginal probability, and p.j =
∑Ng

i=1 pij is the

column marginal probability. As Pm is by definition symmetric, pi. = p.j . Furthermore, let us

consider diagonal and cross-diagonal probabilities pi−j and pi+j
36,71:

pi−j,k =

Ng∑
i=1

Ng∑
j=1

pij [k = |i− j|] k = 0, . . . , Ng − 1

pi+j,k =

Ng∑
i=1

Ng∑
j=1

pij [k = i+ j] k = 2, . . . , 2Ng

Here, [. . .] is an Iverson bracket, which equals 1 when the condition within the brackets is true and

0 otherwise. In effect we select only combinations of elements (i, j) for which the condition holds.
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j

i

0 3 0 2

3 2 3 2

0 3 2 0

2 2 0 0

(a) Mm=→

j

i

0 2 0 1

2 2 1 2

0 1 2 1

1 2 1 0

(b) Mm=↗

j

i

2 1 2 1

1 4 1 1

2 1 2 1

1 1 1 2

(c) Mm=↑

j

i

0 2 1 1

2 2 2 1

1 2 0 1

1 1 1 0

(d) Mm=↖

Table 3.4 — Grey level co-occurrence matrices for the 0◦ (a), 45◦ (b), 90◦ (c) and 135◦ (d) direc-
tions. In vector notation these directions are m = (1, 0), m = (1, 1), m = (0, 1) and m = (−1, 1),
respectively.

It should be noted that while a distance δ = 1 is commonly used for GLCM, other distances are

possible. However, this does not change the number of For example, for δ = 3 (in 3D) the voxels

at (0, 0, 3), (0, 3, 0), (3, 0, 0), (0, 3, 3), (0, 3,−3), (3, 0, 3), (3, 0,−3), (3, 3, 0), (3,−3, 0), (3, 3, 3),

(3, 3,−3), (3,−3, 3) and (3,−3,−3) from the center voxel are considered.

Aggregating features

To improve rotational invariance, GLCM feature values are computed by aggregating informa-

tion from the different underlying directional matrices22. Five methods can be used to aggregate

GLCMs and arrive at a single feature value. A schematic example is shown in Figure 3.3. A feature

may be aggregated as follows:

1. Features are computed from each 2D directional matrix and averaged over 2D directions and

slices (BTW3).

2. Features are computed from a single matrix after merging 2D directional matrices per slice,

and then averaged over slices (SUJT).

3. The feature is computed from a single matrix after merging all 2D directional matrices (ZW7Z).

4. Features are computed from each 3D directional matrix and averaged over the 3D directions

(ITBB).

5. The feature is computed from a single matrix after merging all 3D directional matrices (IAZD).

In methods 2,3 and 5, matrices are merged by summing the co-occurrence counts in each matrix

element (i, j) over the different matrices. Probability distributions are subsequently calculated for

the merged GLCM, which is then used to calculate GLCM features. Feature values may dependent

strongly on the aggregation method.

Distances and distance weighting

The default neighbourhood includes all voxels within Chebyshev distance 1. The corresponding

direction vectors are multiplied by the desired distance δ. From a technical point-of-view, direction
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j
∑
j

i

0 3 0 2 5

3 2 3 2 10

0 3 2 0 5

2 2 0 0 4∑
i 5 10 5 4 24

(a) Mm=(1,0) with margins

j pi.

i

0.00 0.13 0.00 0.08 0.21

0.13 0.08 0.13 0.08 0.42

0.00 0.13 0.08 0.00 0.21

0.08 0.08 0.00 0.00 0.17

p.j 0.21 0.42 0.21 0.17 1.00

(b) Pm=(1,0) with margins

k = |i− j| 0 1 2 3

pi−j 0.17 0.50 0.17 0.17

(c) Diagonal probability for Pm=(1,0)

k = i+ j 2 3 4 5 6 7 8

pi+j 0.00 0.25 0.08 0.42 0.25 0.00 0.00

(d) Cross-diagonal probability for Pm=(1,0)

Table 3.5 — Grey level co-occurrence matrix for the 0◦ direction (a); its corresponding probability
matrix Pm=(1,0) with marginal probabilities pi. and p.j(b); the diagonal probabilities pi−j (c); and
the cross-diagonal probabilities pi+j (d). Discrepancies in panels b, c, and d are due to rounding
errors caused by showing only two decimal places. Also, note that due to GLCM symmetry marginal
probabilities pi. and p.j are the same in both row and column margins of panel b.

vectors may also be determined differently, using any distance norm. In this case, direction vectors

are the vectors to the voxels at δ, or between δ and δ − 1 for the Euclidean norm. Such usage is

however rare and we caution against it due to potential reproducibility issues.

GLCMs may be weighted for distance by multiplying M with a weighting factor w. By default

w = 1, but w may also be an inverse distance function to weight each GLCM, e.g. w = ‖m‖−1
or

w = exp(−‖m‖2)77, with ‖m‖ the length of direction vector m. Whether distance weighting yields

different feature values depends on several factors. When aggregating the feature values, matrices

have to be merged first, otherwise weighting has no effect. Also, it has no effect if the default

neighbourhood is used and the Chebyshev norm is using for weighting. Nor does weighting have

an effect if either Manhattan or Chebyshev norms are used both for constructing a non-default

neighbourhood and for weighting. Weighting may furthermore have no effect for distance δ = 1,

dependent on distance norms. Because of these exceptions, we recommend against using distance

weighting for GLCM.

3.6.1 Joint maximum GYBY

Joint maximum 35 is the probability corresponding to the most common grey level co-occurrence

in the GLCM:

Fcm.joint.max = max(pij)
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Figure 3.3 — Approaches to calculating grey level co-occurrence matrix-based features. M∆k are
texture matrices calculated for direction ∆ in slice k (if applicable), and f∆k is the corresponding
feature value. In (b), (c) and (e) the matrices are merged prior to feature calculation.

3.6.2 Joint average 60VM

Joint average 71 is the grey level weighted sum of joint probabilities:

Fcm.joint.avg =

Ng∑
i=1

Ng∑
j=1

i pij

3.6.3 Joint variance UR99

The joint variance 71, which is also called sum of squares 36, is defined as:

Fcm.joint.var =

Ng∑
i=1

Ng∑
j=1

(i− µ)
2
pij

Here µ is equal to the value of Fcm.joint.avg , which was defined above.

3.6.4 Joint entropy TU9B

Joint entropy 36 is defined as:

Fcm.joint.entr = −
Ng∑
i=1

Ng∑
j=1

pij log2 pij
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3.6.5 Difference average TF7R

The difference average 71 for the diagonal probabilities is defined as:

Fcm.diff .avg =

Ng−1∑
k=0

k pi−j,k

By definition difference average is equivalent to the dissimilarity feature77.

3.6.6 Difference variance D3YU

The difference variance for the diagonal probabilities36 is defined as:

Fcm.diff .var =

Ng−1∑
k=0

(k − µ)2pi−j,k

Here µ is equal to the value of difference average.

3.6.7 Difference entropy NTRS

The difference entropy for the diagonal probabilities36 is defined as:

Fcm.diff .entr = −
Ng−1∑
k=0

pi−j,k log2 pi−j,k

3.6.8 Sum average ZGXS

The sum average for the cross-diagonal probabilities36 is defined as:

Fcm.sum.avg =

2Ng∑
k=2

k pi+j,k

By definition, Fcm.sum.avg = 2Fcm.joint.avg
77.

3.6.9 Sum variance OEEB

The sum variance for the cross-diagonal probabilities36 is defined as:

Fcm.sum.var =

2Ng∑
k=2

(k − µ)2pi+j,k

Here µ is equal to the value of sum average. Sum variance is mathematically identical to the

cluster tendency feature77.
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3.6.10 Sum entropy P6QZ

The sum entropy for the cross-diagonal probabilities36 is defined as:

Fcm.sum.entr = −
2Ng∑
k=2

pi+j,k log2 pi+j,k

3.6.11 Angular second moment 8ZQL

The angular second moment 36, which represents the energy of P∆, is defined as:

Fcm.energy =

Ng∑
i=1

Ng∑
j=1

p2
ij

This feature is also called energy 1,71 and uniformity 17.

3.6.12 Contrast ACUI

Contrast assesses grey level variations36. Hence elements of M∆ that represent large grey level

differences receive greater weight. Contrast is defined as17:

Fcm.contrast =

Ng∑
i=1

Ng∑
j=1

(i− j)2
pij

Note that the original definition by Haralick et al. 36 is seemingly more complex, but rearranging

and simplifying terms leads to the above formulation of contrast.

3.6.13 Dissimilarity 8S9J

Dissimilarity 17 is conceptually similar to the contrast feature, and is defined as:

Fcm.dissimilarity =

Ng∑
i=1

Ng∑
j=1

|i− j| pij

By definition dissimilarity is equivalent to the difference average feature77.

3.6.14 Inverse difference IB1Z

Inverse difference is a measure of homogeneity17. Grey level co-occurrences with a large difference

in levels are weighed less, thus lowering the total feature value. The feature score is maximal if all

grey levels are the same. Inverse difference is defined as:

Fcm.inv .diff =

Ng∑
i=1

Ng∑
j=1

pij
1 + |i− j|

The equation above may also be expressed in terms of diagonal probabilities77:

Fcm.inv .diff =

Ng−1∑
k=0

pi−j,k
1 + k
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3.6.15 Normalised inverse difference NDRX

Clausi 17 suggested normalising inverse difference to improve classification ability. The normalised

feature is then defined as:

Fcm.inv .diff .norm =

Ng∑
i=1

Ng∑
j=1

pij
1 + |i− j|/Ng

Note that in Clausi’s definition, |i−j|2/N2
g is used instead of |i−j|/Ng, which is likely an oversight,

as this exactly matches the definition of the normalised inverse difference moment feature.

The equation may also be expressed in terms of diagonal probabilities77:

Fcm.inv .diff .norm =

Ng−1∑
k=0

pi−j,k
1 + k/Ng

3.6.16 Inverse difference moment WF0Z

Inverse difference moment 36 is similar in concept to the inverse difference feature, but with lower

weights for elements that are further from the diagonal:

Fcm.inv .diff .mom =

Ng∑
i=1

Ng∑
j=1

pij

1 + (i− j)2

The equation above may also be expressed in terms of diagonal probabilities77:

Fcm.inv .diff .mom =

Ng−1∑
k=0

pi−j,k
1 + k2

This feature is also called homogeneity 71.

3.6.17 Normalised inverse difference moment 1QCO

Clausi 17 suggested normalising inverse difference moment to improve classification performance.

This leads to the following definition:

Fcm.inv .diff .mom.norm =

Ng∑
i=1

Ng∑
j=1

pij

1 + (i− j)2
/N2

g

The equation above may also be expressed in terms of diagonal probabilities77:

Fcm.inv .diff .mom.norm =

Ng−1∑
k=0

pi−j,k

1 + (k/Ng)
2
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3.6.18 Inverse variance E8JP

The inverse variance 1 feature is defined as:

Fcm.inv .var = 2

Ng∑
i=1

Ng∑
j>i

pij

(i− j)2

The equation above may also be expressed in terms of diagonal probabilities. Note that in this

case, summation starts at k = 1 instead of k = 077:

Fcm.inv .var =

Ng−1∑
k=1

pi−j,k
k2

3.6.19 Correlation NI2N

Correlation 36 is defined as:

Fcm.corr =
1

σi. σ.j

−µi. µ.j +

Ng∑
i=1

Ng∑
j=1

i j pij


µi. =

∑Ng

i=1 i pi. and σi. =
(∑Ng

i=1(i− µi.)2pi.

)1/2

are the mean and standard deviation of row

marginal probability pi., respectively. Likewise, µ.j and σ.j are the mean and standard deviation

of the column marginal probability p.j , respectively. The calculation of correlation can be simplified

since P∆ is symmetrical:

Fcm.corr =
1

σ2
i.

−µ2
i. +

Ng∑
i=1

Ng∑
j=1

i j pij


An equivalent formulation of correlation is:

Fcm.corr =
1

σi. σ.j

Ng∑
i=1

Ng∑
j=1

(i− µi.) (j − µ.j) pij

Again, simplifying due to matrix symmetry yields:

Fcm.corr =
1

σ2
i.

Ng∑
i=1

Ng∑
j=1

(i− µi.) (j − µi.) pij

3.6.20 Autocorrelation QWB0

Soh and Tsatsoulis 61 defined autocorrelation as:

Fcm.auto.corr =

Ng∑
i=1

Ng∑
j=1

i j pij
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3.6.21 Cluster tendency DG8W

Cluster tendency 1 is defined as:

Fcm.clust.tend =

Ng∑
i=1

Ng∑
j=1

(i+ j − µi. − µ.j)2
pij

Here µi. =
∑Ng

i=1 i pi. and µ.j =
∑Ng

j=1 j p.j . Because of the symmetric nature of P∆, the feature

can also be formulated as:

Fcm.clust.tend =

Ng∑
i=1

Ng∑
j=1

(i+ j − 2µi.)
2
pij

Cluster tendency is mathematically equal to the sum variance feature77.

3.6.22 Cluster shade 7NFM

Cluster shade 71 is defined as:

Fcm.clust.shade =

Ng∑
i=1

Ng∑
j=1

(i+ j − µi. − µ.j)3
pij

As with cluster tendency, µi. =
∑Ng

i=1 i pi. and µ.j =
∑Ng

j=1 j p.j . Because of the symmetric nature

of P∆, the feature can also be formulated as:

Fcm.clust.shade =

Ng∑
i=1

Ng∑
j=1

(i+ j − 2µi.)
3
pij

3.6.23 Cluster prominence AE86

Cluster prominence 71 is defined as:

Fcm.clust.prom =

Ng∑
i=1

Ng∑
j=1

(i+ j − µi. − µ.j)4
pij

As before, µi. =
∑Ng

i=1 i pi. and µ.j =
∑Ng

j=1 j p.j . Because of the symmetric nature of P∆, the

feature can also be formulated as:

Fcm.clust.prom =

Ng∑
i=1

Ng∑
j=1

(i+ j − 2µi.)
4
pij

3.6.24 First measure of information correlation R8DG

Information theoretic correlation is estimated using two different measures36. For symmetric P∆

the first measure is defined as:

Fcm.info.corr .1 =
HXY −HXY1

HX
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HXY = −
∑Ng

i=1

∑Ng

j=1 pij log2 pij is the entropy for the joint probability. HX = −
∑Ng

i=1 pi. log2 pi.
is the entropy for the row marginal probability, which due to symmetry is equal to the entropy of

the column marginal probability. HXY 1 is a type of entropy that is defined as:

HXY 1 = −
Ng∑
i=1

Ng∑
j=1

pij log2 (pi.p.j)

3.6.25 Second measure of information correlation JN9H

The second measure of information theoretic correlation 36 is estimated as follows for symmetric

P∆:

Fcm.info.corr .2 =
√

1− exp (−2 (HXY 2 −HXY ))

As earlier, HXY = −
∑Ng

i=1

∑Ng

j=1 pij log2 pij . HXY 2 is a type of entropy defined as:

HXY 2 = −
Ng∑
i=1

Ng∑
j=1

pi.p.j log2 (pi.p.j)
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3.7 Grey level run length based features TP0I

The grey level run length matrix (GLRLM) was introduced by Galloway 29 to define various tex-

ture features. Like the grey level co-occurrence matrix, GLRLM also assesses the distribution of

discretised grey levels in an image or in a stack of images. However, whereas GLCM assesses

co-occurrence of grey levels within neighbouring pixels or voxels, GLRLM assesses run lengths. A

run length is defined as the length of a consecutive sequence of pixels or voxels with the same grey

level along direction m, which was previously defined in Section 3.6. The GLRLM then contains

the occurrences of runs with length j for a discretised grey level i.

A complete example for GLRLM construction from a 2D image is shown in Table 3.6. Let Mm

be the Ng × Nr grey level run length matrix, where Ng is the number of discretised grey levels

present in the ROI intensity mask and Nr the maximal possible run length along direction m.

Matrix element rij of the GLRLM is the occurrence of grev level i with run length j. Then, let Nv
be the total number of voxels in the ROI intensity mask, and Ns =

∑Ng

i=1

∑Nr

j=1 rij the sum over

all elements in Mm. Marginal sums are also defined. Let ri. be the marginal sum of the runs over

run lengths j for grey value i, that is ri. =
∑Nr

j=1 rij . Similarly, the marginal sum of the runs over

the grey values i for run length j is r.j =
∑Ng

i=1 rij .

Aggregating features

To improve rotational invariance, GLRLM feature values are computed by aggregating inform-

ation from the different underlying directional matrices22. Five methods can be used to aggregate

GLRLMs and arrive at a single feature value. A schematic example was previously shown in Figure

3.3. A feature may be aggregated as follows:

1. Features are computed from each 2D directional matrix and averaged over 2D directions and

slices (BTW3).

2. Features are computed from a single matrix after merging 2D directional matrices per slice,

and then averaged over slices (SUJT).

3. The feature is computed from a single matrix after merging all 2D directional matrices (ZW7Z).

4. Features are computed from each 3D directional matrix and averaged over the 3D directions

(ITBB).

5. The feature is computed from a single matrix after merging all 3D directional matrices (IAZD).

In methods 2,3 and 5, matrices are merged by summing the run counts of each matrix element (i, j)

over the different matrices. Note that when matrices are merged, Nv should likewise be summed

to retain consistency. Feature values may dependent strongly on the aggregation method.

Distance weighting

GLRLMs may be weighted for distance by multiplying the run lengths with a weighting factor

w. By default w = 1, but w may also be an inverse distance function, e.g. w = ‖m‖−1
or

w = exp(−‖m‖2)77, with ‖m‖ the length of direction vector m. Whether distance weighting

yields different feature values depends on several factors. When aggregating the feature values,

matrices have to be merged first, otherwise weighting has no effect. It also has no effect if the

Chebyshev norm is used for weighting. Distance weighting is non-standard use, and we caution

against it due to potential reproducibility issues.
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1 2 2 3

1 2 3 3

4 2 4 1

4 1 2 3

(a) Grey levels

Run length j

1 2 3 4

i

1 4 0 0 0

2 3 1 0 0

3 2 1 0 0

4 3 0 0 0

(b) Mm=→

Run length j

1 2 3 4

i

1 4 0 0 0

2 3 1 0 0

3 2 1 0 0

4 3 0 0 0

(c) Mm=↗

Run length j

1 2 3 4

i

1 2 1 0 0

2 2 0 1 0

3 2 1 0 0

4 1 1 0 0

(d) Mm=↑

Run length j

1 2 3 4

i

1 4 0 0 0

2 3 1 0 0

3 4 0 0 0

4 3 0 0 0

(e) Mm=↖

Table 3.6 — Grey level run length matrices for the 0◦ (a), 45◦ (b), 90◦ (c) and 135◦ (d) directions. In
vector notation these directions are m = (1, 0), m = (1, 1), m = (0, 1) and m = (−1, 1), respectively.

3.7.1 Short runs emphasis 22OV

This feature emphasises short run lengths29. It is defined as:

Frlm.sre =
1

Ns

Nr∑
j=1

r.j
j2

3.7.2 Long runs emphasis W4KF

This feature emphasises long run lengths29. It is defined as:

Frlm.lre =
1

Ns

Nr∑
j=1

j2r.j
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3.7.3 Low grey level run emphasis V3SW

This feature is a grey level analogue to short runs emphasis 15. Instead of short run lengths, low

grey levels are emphasised. The feature is defined as:

Frlm.lgre =
1

Ns

Ng∑
i=1

ri.
i2

3.7.4 High grey level run emphasis G3QZ

The high grey level run emphasis feature is a grey level analogue to long runs emphasis 15. The

feature emphasises high grey levels, and is defined as:

Frlm.hgre =
1

Ns

Ng∑
i=1

i2ri.

3.7.5 Short run low grey level emphasis HTZT

This feature emphasises runs in the upper left quadrant of the GLRLM, where short run lengths

and low grey levels are located21. It is defined as:

Frlm.srlge =
1

Ns

Ng∑
i=1

Nr∑
j=1

rij
i2j2

3.7.6 Short run high grey level emphasis GD3A

This feature emphasises runs in the lower left quadrant of the GLRLM, where short run lengths

and high grey levels are located21. The feature is defined as:

Frlm.srhge =
1

Ns

Ng∑
i=1

Nr∑
j=1

i2rij
j2

3.7.7 Long run low grey level emphasis IVPO

This feature emphasises runs in the upper right quadrant of the GLRLM, where long run lengths

and low grey levels are located21. The feature is defined as:

Frlm.lrlge =
1

Ns

Ng∑
i=1

Nr∑
j=1

j2rij
i2

3.7.8 Long run high grey level emphasis 3KUM

This feature emphasises runs in the lower right quadrant of the GLRLM, where long run lengths

and high grey levels are located21. The feature is defined as:

Frlm.lrhge =
1

Ns

Ng∑
i=1

Nr∑
j=1

i2j2rij
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3.7.9 Grey level non-uniformity R5YN

This feature assesses the distribution of runs over the grey values29. The feature value is low when

runs are equally distributed along grey levels. The feature is defined as:

Frlm.glnu =
1

Ns

Ng∑
i=1

r2
i.

3.7.10 Normalised grey level non-uniformity OVBL

This is a normalised version of the grey level non-uniformity feature. It is defined as:

Frlm.glnu.norm =
1

N2
s

Ng∑
i=1

r2
i.

3.7.11 Run length non-uniformity W92Y

This features assesses the distribution of runs over the run lengths29. The feature value is low

when runs are equally distributed along run lengths. It is defined as:

Frlm.rlnu =
1

Ns

Nr∑
j=1

r2
.j

3.7.12 Normalised run length non-uniformity IC23

This is normalised version of the run length non-uniformity feature. It is defined as:

Frlm.rlnu.norm =
1

N2
s

Nr∑
j=1

r2
.j

3.7.13 Run percentage 9ZK5

This feature measures the fraction of the number of realised runs and the maximum number of

potential runs29. Strongly linear or highly uniform ROI volumes produce a low run percentage. It

is defined as:

Frlm.r .perc =
Ns
Nv

As noted before, when this feature is calculated using a merged GLRLM, Nv should be the sum

of the number of voxels of the underlying matrices to allow proper normalisation.

3.7.14 Grey level variance 8CE5

This feature estimates the variance in runs over the grey levels. Let pij = rij/Ns be the joint

probability estimate for finding discretised grey level i with run length j. Grey level variance is
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then defined as:

Frlm.gl.var =

Ng∑
i=1

Nr∑
j=1

(i− µ)2pij

Here, µ =
∑Ng

i=1

∑Nr

j=1 i pij .

3.7.15 Run length variance SXLW

This feature estimates the variance in runs over the run lengths. As before let pij = rij/Ns. The

feature is defined as:

Frlm.rl.var =

Ng∑
i=1

Nr∑
j=1

(j − µ)2pij

Mean run length is defined as µ =
∑Ng

i=1

∑Nr

j=1 j pij .

3.7.16 Run entropy HJ9O

Run entropy was investigated by Albregtsen et al. 3 . Again, let pij = rij/Ns. The entropy is then

defined as:

Frlm.rl.entr = −
Ng∑
i=1

Nr∑
j=1

pij log2 pij
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3.8 Grey level size zone based features 9SAK

The grey level size zone matrix (GLSZM) counts the number of groups (or zones) of linked voxels69.

Voxels are linked if the neighbouring voxel has an identical discretised grey level. Whether a voxel

classifies as a neighbour depends on its connectedness. In a 3D approach to texture analysis we

consider 26-connectedness, which indicates that a center voxel is linked to all of the 26 neighbouring

voxels with the same grey level. In the 2 dimensional approach, 8-connectedness is used. A

potential issue for the 2D approach is that voxels which may otherwise be considered to belong

to the same zone by linking across slices, are now two or more separate zones within the slice

plane. Whether this issue negatively affects predictive performance of GLSZM-based features or

their reproducibility has not been determined.

Let M be the Ng ×Nz grey level size zone matrix, where Ng is the number of discretised grey

levels present in the ROI intensity mask and Nz the maximum zone size of any group of linked

voxels. Element sij of M is then the number of zones with discretised grey level i and size j.

Furthermore, let Nv be the number of voxels in the intensity mask and Ns =
∑Ng

i=1

∑Nz

j=1 sij be the

total number of zones. Marginal sums can likewise be defined. Let si. =
∑Nz

j=1 sij be the number

of zones with discretised grey level i, regardless of size. Likewise, let s.j =
∑Ng

i=1 sij be the number

of zones with size j, regardless of grey level. A two dimensional example is shown in Table 3.7.

Aggregating features

Three methods can be used to aggregate GLSZMs and arrive at a single feature value. A

schematic example is shown in Figure 3.4. A feature may be aggregated as follows:

1. Features are computed from 2D matrices and averaged over slices (8QNN).

2. The feature is computed from a single matrix after merging all 2D matrices (62GR).

3. The feature is computed from a 3D matrix (KOBO).

Method 2 involves merging GLSZMs by summing the number of zones sij over the GLSZM for

the different slices. Note that when matrices are merged, Nv should likewise be summed to retain

consistency. Feature values may dependent strongly on the aggregation method.

Distances

The default neighbourhood for GLSZM is constructed using Chebyshev distance δ = 1. Man-

hattan or Euclidean norms may also be used to construct a neighbourhood, and both lead to

a 6-connected (3D) and 4-connected (2D) neighbourhoods. Larger distances are also technically

possible, but will occasionally cause separate zones with the same intensity to be considered as

belonging to the same zone. Using different neighbourhoods for determining voxel linkage is non-

standard use, and we caution against it due to potential reproducibility issues.

Note on feature references

GLSZM feature definitions are based on the definitions of GLRLM features69. Hence, references

may be found in the section on GLRLM (3.7).
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1 2 2 3

1 2 3 3

4 2 4 1

4 1 2 3

(a) Grey levels

Zone size j

1 2 3 4 5

i

1 2 1 0 0 0

2 0 0 0 0 1

3 1 0 1 0 0

4 1 1 0 0 0

(b) Grey level size zone mat-
rix

Table 3.7 — Original image with grey levels (a); and corresponding grey level size zone matrix (GLSZM)
under 8-connectedness (b). Element s(i, j) of the GLSZM indicates the number of times a zone of j
linked pixels and grey level i occurs within the image.

mean

M
1

M
2

M
3

f
1

f
2

f
3

f

(a) by slice, without merging

M
1

M
2

M
3

M f

(b) by slice, with merging

M f

(c) as volume

Figure 3.4 — Approaches to calculating grey level size zone matrix-based features. Mk are texture
matrices calculated for slice k (if applicable), and fk is the corresponding feature value. In (b) the
matrices from the different slices are merged prior to feature calculation.

3.8.1 Small zone emphasis 5QRC

This feature emphasises small zones. It is defined as:

Fszm.sze =
1

Ns

Nz∑
j=1

s.j
j2

3.8.2 Large zone emphasis 48P8

This feature emphasises large zones. It is defined as:

Fszm.lze =
1

Ns

Nz∑
j=1

j2s.j
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3.8.3 Low grey level zone emphasis XMSY

This feature is a grey level analogue to small zone emphasis. Instead of small zone sizes, low grey

levels are emphasised. The feature is defined as:

Fszm.lgze =
1

Ns

Ng∑
i=1

si.
i2

3.8.4 High grey level zone emphasis 5GN9

The high grey level zone emphasis feature is a grey level analogue to large zone emphasis. The

feature emphasises high grey levels, and is defined as:

Fszm.hgze =
1

Ns

Ng∑
i=1

i2si.

3.8.5 Small zone low grey level emphasis 5RAI

This feature emphasises zone counts within the upper left quadrant of the GLSZM, where small

zone sizes and low grey levels are located. It is defined as:

Fszm.szlge =
1

Ns

Ng∑
i=1

Nz∑
j=1

sij
i2j2

3.8.6 Small zone high grey level emphasis HW1V

This feature emphasises zone counts in the lower left quadrant of the GLSZM, where small zone

sizes and high grey levels are located. The feature is defined as:

Fszm.szhge =
1

Ns

Ng∑
i=1

Nz∑
j=1

i2sij
j2

3.8.7 Large zone low grey level emphasis YH51

This feature emphasises zone counts in the upper right quadrant of the GLSZM, where large zone

sizes and low grey levels are located. The feature is defined as:

Fszm.lzlge =
1

Ns

Ng∑
i=1

Nz∑
j=1

j2sij
i2

3.8.8 Large zone high grey level emphasis J17V

This feature emphasises zone counts in the lower right quadrant of the GLSZM, where large zone

sizes and high grey levels are located. The feature is defined as:

Fszm.lzhge =
1

Ns

Ng∑
i=1

Nz∑
j=1

i2j2sij
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3.8.9 Grey level non-uniformity JNSA

This feature assesses the distribution of zone counts over the grey values. The feature value is low

when zone counts are equally distributed along grey levels. The feature is defined as:

Fszm.glnu =
1

Ns

Ng∑
i=1

s2
i.

3.8.10 Normalised grey level non-uniformity Y1RO

This is a normalised version of the grey level non-uniformity feature. It is defined as:

Fszm.glnu.norm =
1

N2
s

Ng∑
i=1

s2
i.

3.8.11 Zone size non-uniformity 4JP3

This features assesses the distribution of zone counts over the different zone sizes. Zone size

non-uniformity is low when zone counts are equally distributed along zone sizes. It is defined as:

Fszm.zsnu =
1

Ns

Nz∑
j=1

s2
.j

3.8.12 Normalised zone size non-uniformity VB3A

This is a normalised version of zone size non-uniformity. It is defined as:

Fszm.zsnu.norm =
1

N2
s

Nz∑
i=1

s2
.j

3.8.13 Zone percentage P30P

This feature measures the fraction of the number of realised zones and the maximum number of

potential zones. Highly uniform ROIs produce a low zone percentage. It is defined as:

Fszm.z .perc =
Ns
Nv

3.8.14 Grey level variance BYLV

This feature estimates the variance in zone counts over the grey levels. Let pij = sij/Ns be the

joint probability estimate for finding zones with discretised grey level i and size j. The feature is

then defined as:

Fszm.gl.var =

Ng∑
i=1

Nz∑
j=1

(i− µ)2pij

Here, µ =
∑Ng

i=1

∑Nz

j=1 i pij .
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3.8.15 Zone size variance 3NSA

This feature estimates the variance in zone counts over the different zone sizes. As before let

pij = sij/Ns. The feature is defined as:

Fszm.zs.var =

Ng∑
i=1

Nz∑
j=1

(j − µ)2pij

Mean zone size is defined as µ =
∑Ng

i=1

∑Nz

j=1 j pij .

3.8.16 Zone size entropy GU8N

Let pij = sij/Ns. Zone size entropy is then defined as:

Fszm.zs.entr = −
Ng∑
i=1

Nz∑
j=1

pij log2 pij
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3.9 Grey level distance zone based features VMDZ

The grey level distance zone matrix (GLDZM) counts the number of groups (or zones) of linked

voxels which share a specific discretised grey level value and possess the same distance to ROI

edge69. The GLDZM thus captures the relation between location and grey level. Two maps are

required to calculate the GLDZM. The first is a grey level zone map, which is identical to the one

created for the grey level size zone matrix (GLSZM), see Section 3.8. The second is a distance

map, which will be described in detail later.

As with GSLZM, neighbouring voxels are linked if they share the same grey level value. Whether

a voxel classifies as a neighbour depends on its connectedness. We consider 26-connectedness for

a 3D approach and 8-connectedness in the 2D approach.

The distance to the ROI edge is defined according to 6 and 4-connectedness for 3D and 2D,

respectively. Because of the connectedness definition used, the distance of a voxel to the outer

border is equal to the minimum number edges of neighbouring voxels that need to be crossed to

reach the ROI edge. The distance for a linked group of voxels with the same grey value is equal

to the minimum distance for the respective voxels in the distance map.

Our definition deviates from the original by Thibault et al. 69 . The original was defined in a

rectangular 2D image, whereas ROIs are rarely rectangular cuboids. Approximating distance using

Chamfer maps is then no longer a fast and easy solution. Determining distance iteratively in 6 or

4-connectedness is a relatively efficient solution, implemented as follows:

1. The ROI mask is morphologically eroded using the appropriate (6 or 4-connected) structure

element.

2. All eroded ROI voxels are updated in the distance map by adding 1.

3. The above steps are performed iteratively until the ROI mask is empty.

A second difference with the original definition is that the lowest possible distance is 1 instead of

0 for voxels directly on the ROI edge. This prevents division by 0 for some features.

Let M be the Ng × Nd grey level size zone matrix, where Ng is the number of discretised

grey levels present in the ROI intensity mask and Nd the largest distance of any zone. Element

dij = d(i, j) of M is then number of zones with discretised grey level i and distance j. Furthermore,

let Nv be the number of voxels and Ns =
∑Ng

i=1

∑Nd

j=1 dij be the total zone count. Marginal sums

can likewise be defined. Let di. =
∑Nd

j=1 dij be the number of zones with discretised grey level

i, regardless of distance. Likewise, let d.j =
∑Ng

i=1 dij be the number of zones with distance j,

regardless of grey level. A two dimensional example is shown in Table 3.8.

Morphological and intensity masks.

The GLDZM is special in that it uses both ROI masks. The distance map is determined using

the morphological ROI mask, whereas the intensity mask is used for determining the zones, as

with the GLSZM.

Aggregating features

Three methods can be used to aggregate GLDZMs and arrive at a single feature value. A

schematic example was previously shown in Figure 3.4. A feature may be aggregated as follows:

1. Features are computed from 2D matrices and averaged over slices (8QNN).

2. The feature is computed from a single matrix after merging all 2D matrices (62GR).
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3. The feature is computed from a 3D matrix (KOBO).

Method 2 involves merging GLDZMs by summing the number of zones dij over the GLDZM for

the different slices. Note that when matrices are merged, Nv should likewise be summed to retain

consistency. Feature values may dependent strongly on the aggregation method.

Distances

In addition to the use of different distance norms to determine voxel linkage, as described in

section 3.8, different distance norms may be used to determine distance of zones to the boundary.

The default is to use the Manhattan norm which allows for a computationally efficient implement-

ation, as described above. A similar implementation is possible using the Chebyshev norm, as

it merely changes connectedness of the structure element. Implementations using an Euclidean

distance norm are less efficient as this demands searching for the nearest non-ROI voxel for each

of the Nv voxels in the ROI. An added issue is that Euclidean norms may lead to a wide range of

different distances j that require rounding before constructing the grey level distance zone matrix

M. Using different distance norms is non-standard use, and we caution against it due to potential

reproducibility issues.

Note on feature references

GLDZM feature definitions are based on the definitions of GLRLM features69. Hence, references

may be found in the section on GLRLM (3.7).

1 2 2 3

1 2 3 3

4 2 4 1

4 1 2 3

(a) Grey levels

1 1 1 1

1 2 2 1

1 2 2 1

1 1 1 1

(b) Distance
map

j

1 2

i

1 3 0

2 2 0

3 2 0

4 1 1

(c) Grey level
distance zone
matrix

Table 3.8 — Original image with grey levels (a); corresponding distance map for distance to border
(b); and corresponding grey level distance zone matrix (GLDZM) under 4-connectedness (c). Element
d(i, j) of the GLDZM indicates the number of times a zone with grey level i and a minimum distance
to border j occurs within the image.

3.9.1 Small distance emphasis 0GBI

This feature emphasises small distances. It is defined as:

Fdzm.sde =
1

Ns

Nd∑
j=1

d.j
j2

3.9.2 Large distance emphasis MB4I

This feature emphasises large distances. It is defined as:

Fdzm.lde =
1

Ns

Nd∑
j=1

j2d.j
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3.9.3 Low grey level zone emphasis S1RA

This feature is a grey level analogue to small distance emphasis. Instead of small zone distances,

low grey levels are emphasised. The feature is defined as:

Fdzm.lgze =
1

Ns

Ng∑
i=1

di.
i2

3.9.4 High grey level zone emphasis K26C

The high grey level zone emphasis feature is a grey level analogue to large distance emphasis. The

feature emphasises high grey levels, and is defined as:

Fdzm.hgze =
1

Ns

Ng∑
i=1

i2di.

3.9.5 Small distance low grey level emphasis RUVG

This feature emphasises runs in the upper left quadrant of the GLDZM, where small zone distances

and low grey levels are located. It is defined as:

Fdzm.sdlge =
1

Ns

Ng∑
i=1

Nd∑
j=1

dij
i2j2

3.9.6 Small distance high grey level emphasis DKNJ

This feature emphasises runs in the lower left quadrant of the GLDZM, where small zone distances

and high grey levels are located. Small distance high grey level emphasis is defined as:

Fdzm.sdhge =
1

Ns

Ng∑
i=1

Nd∑
j=1

i2dij
j2

3.9.7 Large distance low grey level emphasis A7WM

This feature emphasises runs in the upper right quadrant of the GLDZM, where large zone distances

and low grey levels are located. The feature is defined as:

Fdzm.ldlge =
1

Ns

Ng∑
i=1

Nd∑
j=1

j2dij
i2

3.9.8 Large distance high grey level emphasis KLTH

This feature emphasises runs in the lower right quadrant of the GLDZM, where large zone distances

and high grey levels are located. The large distance high grey level emphasis feature is defined as:

Fdzm.ldhge =
1

Ns

Ng∑
i=1

Nd∑
j=1

i2j2dij
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3.9.9 Grey level non-uniformity VFT7

This feature measures the distribution of zone counts over the grey values. Grey level non-

uniformity is low when zone counts are equally distributed along grey levels. The feature is

defined as:

Fdzm.glnu =
1

Ns

Ng∑
i=1

d2
i.

3.9.10 Normalised grey level non-uniformity 7HP3

This is a normalised version of the grey level non-uniformity feature. It is defined as:

Fdzm.glnu.norm =
1

N2
s

Ng∑
i=1

d2
i.

3.9.11 Zone distance non-uniformity V294

Zone distance non-uniformity measures the distribution of zone counts over the different zone

distances. Zone distance non-uniformity is low when zone counts are equally distributed along

zone distances. It is defined as:

Fdzm.zdnu =
1

Ns

Nd∑
j=1

d2
.j

3.9.12 Zone distance non-uniformity normalised IATH

This is a normalised version of the zone distance non-uniformity feature. It is defined as:

Fdzm.zdnu.norm =
1

N2
s

Nd∑
i=1

d2
.j

3.9.13 Zone percentage VIWW

This feature measures the fraction of the number of realised zones and the maximum number of

potential zones. Highly uniform ROIs produce a low zone percentage. It is defined as:

Fdzm.z .perc =
Ns
Nv

3.9.14 Grey level variance QK93

This feature estimates the variance in zone counts over the grey levels. Let pij = dij/Ns be the

joint probability estimate for finding zones with discretised grey level i at distance j. The feature

is then defined as:

Fdzm.gl.var =

Ng∑
i=1

Nd∑
j=1

(i− µ)2pij
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Here, µ =
∑Ng

i=1

∑Nd

j=1 i pij .

3.9.15 Zone distance variance 7WT1

This feature estimates the variance in zone counts for the different zone distances. As before let

pij = dij/Ns. The feature is defined as:

Fdzm.zd.var =

Ng∑
i=1

Nd∑
j=1

(j − µ)2pij

Mean zone size is defined as µ =
∑Ng

i=1

∑Nd

j=1 j pij .

3.9.16 Zone distance entropy GBDU

Again, let pij = dij/Ns. Zone distance entropy is then defined as:

Fdzm.zd.entr = −
Ng∑
i=1

Nd∑
j=1

pij log2 pij
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3.10 Neighbourhood grey tone difference based featuresIPET

Amadasun and King 5 introduced an alternative to the grey level co-occurrence matrix. The

neighbourhood grey tone difference matrix (NGTDM) contains the sum of grey level differences

of pixels/voxels with discretised grey level i and the average discretised grey level of neighbour-

ing pixels/voxels within a Chebyshev distance δ. For 3D volumes, we can extend the original

definition by Amadasun and King. Let Xd,k be the discretised grey level of a voxel at position

k = (kx, ky, kz). Then the average grey level within a neighbourhood centred at (kx, ky, kz), but

excluding (kx, ky, kz) itself is:

Xk =
1

W

δ∑
mz=−δ

δ∑
my=−δ

δ∑
mx=−δ

Xd(kx+mx, ky+my, kz+mz)

(mx,my,mz) 6= (0, 0, 0)

W = (2δ + 1)3 − 1 is the size of the 3D neighbourhood. For 2D W = (2δ + 1)2 − 1, and averages

are not calculated between different slices. Neighbourhood grey tone difference si for discretised

grey level i is then:

si =

Nv∑
k

|i−Xk| [Xd(k) = i and khas a valid neighbourhood]

Here, [. . .] is an Iverson bracket, which is 1 if the conditions that the grey level Xd,k of voxel k

is equal to i and the voxel has a valid neighbourhood are both true; it is 0 otherwise. Nv is the

number of voxels in the ROI intensity mask.

A 2D example is shown in Table 3.9. A distance of δ = 1 is used in this example, leading

to 8 neighbouring pixels. Entry s1 = 0 because there are no valid pixels with grey level 1. Two

pixels have grey level 2. The average value of their neighbours are 19/8 and 21/8. Thus s2 =

|2− 19/8|+ |2− 21/8| = 1. Similarly s3 = |3− 19/8| = 0.625 and s4 = |4− 17/8| = 1.825.

We deviate from the original definition by Amadasun and King 5 as we do not demand that valid

neighbourhoods are completely inside the ROI. In an irregular ROI mask, valid neighbourhoods

may simply not exist for a distance δ. Instead, we consider a valid neighbourhood to exist if there

is at least one neighbouring voxel included in the ROI mask. The average grey level for voxel k

within a valid neighbourhood is then:

Xk =
1

Wk

δ∑
mz=−δ

δ∑
my=−δ

δ∑
mx=−δ

Xd(k + m)[m 6= 0 and k + m in ROI]

The neighbourhood size Wk for this voxel is equal to the number of voxels in the neighbourhood

that are part of the ROI mask:

Wk =

δ∑
mz=−δ

δ∑
my=−δ

δ∑
mx=−δ

[m 6= 0 and k + m in ROI]

Under our definition, neighbourhood grey tone difference si for discretised grey level i can be

directly expressed using neighbourhood size Wk of voxel k:

si =

Nv∑
k

|i−Xk| [Xd(k) = i and Wk 6= 0]

Consequentially, ni is the total number of voxels with grey level i which have a non-zero neigh-
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bourhood size.

Many NGTDM-based features depend on the Ng grey level probabilities pi = ni/Nv,c, where Ng
is the number of discretised grey levels in the ROI intensity mask and Nv,c =

∑
ni is total number

of voxels that have at least one neighbour. If all voxels have at least one neighbour Nv,c = Nv.

Furthermore, let Ng,p ≤ Ng be the number of discretised grey levels with pi > 0. In the above

example, Ng = 4 and Ng,p = 3.

Aggregating features

Three methods can be used to aggregate NGTDMs and arrive at a single feature value. A

schematic example was previously shown in Figure 3.4. A feature may be aggregated as follows:

1. Features are computed from 2D matrices and averaged over slices (8QNN).

2. The feature is computed from a single matrix after merging all 2D matrices (62GR).

3. The feature is computed from a 3D matrix (KOBO).

Method 2 involves merging NGTDMs by summing the neighbourhood grey tone difference si and

the number of voxels with a valid neighbourhood ni and grey level i for NGTDMs of the different

slices. Note that when NGTDMs are merged, Nv,c and pi should be updated based on the merged

NGTDM. Feature values may dependent strongly on the aggregation method.

Distances and distance weighting

The default neighbourhood is defined using the Chebyshev norm. Manhattan or Euclidean

norms may be used as well. This requires a more general definition for the average grey level Xk:

Xk =
1

Wk

δ∑
mz=−δ

δ∑
my=−δ

δ∑
mx=−δ

Xd(k + m)[‖m‖ ≤ δ and m 6= 0 and k + m in ROI]

The neighbourhood size Wk is:

Wk =

δ∑
mz=−δ

δ∑
my=−δ

δ∑
mx=−δ

[‖m‖ ≤ δ and m 6= 0 and k + m in ROI]

As before, [. . .] is an Iverson bracket.

Distance weighting for NGTDM is relatively straightforward. Let w be a weight dependent on

m, e.g. w = ‖m‖−1
or w = exp(−‖m‖2). The average grey level is then:

Xk =
1

Wk

δ∑
mz=−δ

δ∑
my=−δ

δ∑
mx=−δ

w(m)Xd(k + m)[‖m‖ ≤ δ and m 6= 0 and k + m in ROI]

The neighbourhood size Wk becomes a general weight:

Wk =

δ∑
mz=−δ

δ∑
my=−δ

δ∑
mx=−δ

w(m)[‖m‖ ≤ δ and m 6= 0 and k + m in ROI]

Employing different distance norms and distance weighting is considered non-standard use, and

we caution against them due to potential reproducibility issues.
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1 2 2 3

1 2 3 3

4 2 4 1

4 1 2 3

(a) Grey levels

ni pi si

i

1 0 0.00 0.000

2 2 0.50 1.000

3 1 0.25 0.625

4 1 0.25 1.825

(b) Neighbourhood grey
tone difference matrix

Table 3.9 — Original image with grey levels (a) and corresponding neighbourhood grey tone difference
matrix (NGTDM) (b). The Nv,c pixels with valid neighbours at distance 1 are located within the
rectangle in (a). The grey level voxel count ni, the grey level probability pi = ni/Nv,c, and the
neighbourhood grey level difference si for pixels with grey level i are included in the NGTDM. Note
that our actual definition deviates from the original definition of Amadasun and King 5 , which is used
here. In our definition complete neighbourhood are no longer required. In our definition the NGTDM
would be calculated on the entire pixel area, and not solely on those pixels within the rectangle of panel
(a).

3.10.1 Coarseness QCDE

Grey level differences in coarse textures are generally small due to large-scale patterns. Summing

differences gives an indication of the level of the spatial rate of change in intensity5. Coarseness

is defined as:

Fngt.coarseness =
1∑Ng

i=1 pi si

Because
∑Ng

i=1 pi si potentially evaluates to 0, the maximum coarseness value is set to an arbitrary

number of 106. Amadasun and King originally circumvented this issue by adding a unspecified

small number ε to the denominator, but an explicit, though arbitrary, maximum value should allow

for more consistency.

3.10.2 Contrast 65HE

Contrast depends on the dynamic range of the grey levels as well as the spatial frequency of

intensity changes5. Thus, contrast is defined as:

Fngt.contrast =

 1

Ng,p (Ng,p − 1)

Ng∑
i1=1

Ng∑
i2=1

pi1pi2 (i1 − i2)2

 1

Nv,c

Ng∑
i=1

si


Grey level probabilities pi1 and pi2 are copies of pi with different iterators, i.e. pi1 = pi2 for i1 = i2.

The first term considers the grey level dynamic range, whereas the second term is a measure for

intensity changes within the volume. If Ng,p = 1, Fngt.contrast = 0.

3.10.3 Busyness NQ30

Textures with large changes in grey levels between neighbouring voxels are said to be busy5.

Busyness was defined as:

Fngt.busyness =

∑Ng

i=1 pi si∑Ng

i1=1

∑Ng

i2=1 i1 pi1 − i2 pi2
, pi1 6= 0 and pi2 6= 0
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As before, pi1 = pi2 for i1 = i2. The original definition was erroneously formulated as the denom-

inator will always evaluate to 0. Therefore we use a slightly different definition38:

Fngt.busyness =

∑Ng

i=1 pi si∑Ng

i1=1

∑Ng

i2=1 |i1 pi1 − i2 pi2 |
, pi1 6= 0 and pi2 6= 0

If Ng,p = 1, Fngt.busyness = 0.

3.10.4 Complexity HDEZ

Complex textures are non-uniform and rapid changes in grey levels are common5. Texture com-

plexity is defined as:

Fntg.complexity =
1

Nv,c

Ng∑
i1=1

Ng∑
i2=1

|i1 − i2|
pi1 si1 + pi2 si2

pi1 + pi2
, pi1 6= 0 and pi2 6= 0

As before, pi1 = pi2 for i1 = i2, and likewise si1 = si2 for i1 = i2.

3.10.5 Strength 1X9X

Amadasun and King 5 defined texture strength as:

Fngt.strength =

∑Ng

i1=1

∑Ng

i2=1 (pi1 + pi2) (i1 − i2)
2∑Ng

i=1 si
, pi1 6= 0 and pi2 6= 0

As before, pi1 = pi2 for i1 = i2. If
∑Ng

i=1 si = 0, Fngt.strength = 0.
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3.11 Neighbouring grey level dependence based featuresREK0

Sun and Wee 67 defined the neighbouring grey level dependence matrix (NGLDM) as an alternative

to the grey level co-occurrence matrix. The NGLDM aims to capture the coarseness of the overall

texture and is rotationally invariant.

NGLDM also involves the concept of a neighbourhood around a central voxel. All voxels

within Chebyshev distance δ are considered to belong to the neighbourhood of the center voxel.

The discretised grey levels of the center voxel k at position k and a neighbouring voxel m at

k + m are said to be dependent if |Xd(k)−Xd(k + m)| ≤ α, with α being a non-negative integer

coarseness parameter. The number of grey level dependent voxels j within the neighbourhood is

then counted as:

jk = 1 +

δ∑
mz=−δ

δ∑
my=−δ

δ∑
mx=−δ

[|Xd(k)−Xd(k + m)| ≤ α and m 6= 0]

Here, [. . .] is an Iverson bracket, which is 1 if the aforementioned condition is fulfilled, and 0

otherwise. Note that the minimum dependence jk = 1 and not jk = 0. This is done because

some feature definitions require a minimum dependence of 1 or are undefined otherwise. One may

therefore also simplify the expression for jk by including the center voxel:

jk =

δ∑
mz=−δ

δ∑
my=−δ

δ∑
mx=−δ

[|Xd(k)−Xd(k + m)| ≤ α]

Dependence jk is iteratively determined for each voxel k in the ROI intensity mask. M is then

the Ng×Nn neighbouring grey level dependence matrix, where Ng is the number of discretised grey

levels present in the ROI intensity mask and Nn = max(jk) the maximum grey level dependence

count found. Element sij of M is then the number of neighbourhoods with a center voxel with

discretised grey level i and a neighbouring voxel dependence j. Furthermore, let Nv be the number

of voxels in the ROI intensity mask, and Ns =
∑Ng

i=1

∑Nn

j=1 sij the number of neighbourhoods.

Marginal sums can likewise be defined. Let si. =
∑Nn

j=1 be the number of neighbourhoods with

discretised grey level i, and let sj. =
∑Ng

i=1 sij be the number of neighbourhoods with dependence

j, regardless of grey level. A two dimensional example is shown in Table 3.10.

The definition we actually use deviates from the original by Sun and Wee 67 . Because regions

of interest are rarely cuboid, omission of neighbourhoods which contain voxels outside the ROI

mask may lead to inconsistent results, especially for larger distance δ. Hence the neighbourhoods

of all voxels in the within the ROI intensity mask are considered, and consequently Nv = Ns.

Neighbourhood voxels located outside the ROI do not add to dependence j:

jk =

δ∑
mz=−δ

δ∑
my=−δ

δ∑
mx=−δ

[|Xd(k)−Xd(k + m)| ≤ α and k + m in ROI]

Note that while α = 0 is a typical choice for the coarseness parameter, different α are possible.

Likewise, a typical choice for neighbourhood radius δ is Chebyshev distance δ = 1 but larger values

are possible as well.

Aggregating features

Three methods can be used to aggregate NGLDMs and arrive at a single feature value. A

schematic example was previously shown in Figure 3.4. A feature may be aggregated as follows:
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1. Features are computed from 2D matrices and averaged over slices (8QNN).

2. The feature is computed from a single matrix after merging all 2D matrices (62GR).

3. The feature is computed from a 3D matrix (KOBO).

Method 2 involves merging NGLDMs by summing the dependence count sij by element over the

NGLDM of the different slices. Note that when NGLDMs are merged, Nv and Ns should likewise be

summed to retain consistency. Feature values may dependent strongly on the aggregation method.

Distances and distance weighting

Default neighbourhoods are constructed using the Chebyshev norm, but other norms can be

used as well. For this purpose it is useful to generalise the dependence count equation to:

jk =

δ∑
mz=−δ

δ∑
my=−δ

δ∑
mx=−δ

[‖m‖ ≤ δ and |Xd(k)−Xd(k + m)| ≤ α and k + m in ROI]

with m the vector between voxels k and m and ‖m‖ its length according to the particular norm.

In addition, dependence may be weighted by distance. Let w be a weight dependent on m, e.g.

w = ‖m‖−1
or w = exp(−‖m‖2). The dependence of voxel k is then:

jk =

δ∑
mz=−δ

δ∑
my=−δ

δ∑
mx=−δ

w(m)[‖m‖ ≤ δ and |Xd(k)−Xd(k + m)| ≤ α and k + m in ROI]

Employing different distance norms and distance weighting is considered non-standard use, and

we caution against them due to potential reproducibility issues.

Note on feature references

The NGLDM is structured similarly to the GLRLM, GLSZM and GLDZM. NGLDM feature

definitions are therefore based on the definitions of GLRLM features, and references may be found

in Section 3.7, except for the features originally defined by Sun and Wee 67 .

1 2 2 3

1 2 3 3

4 2 4 1

4 1 2 3

(a) Grey levels

dependence k

0 1 2 3

i

1 0 0 0 0

2 0 0 1 1

3 0 0 1 0

4 1 0 0 0

(b) Neighbouring grey
level dependence matrix

Table 3.10 — Original image with grey levels and pixels with a complete neighbourhood within the
square (a); corresponding neighbouring grey level dependence matrix for distance d =

√
2 and coarseness

parameter a = 0 (b). Element s(i, j) of the NGLDM indicates the number of neighbourhoods with a
center pixel with grey level i and neighbouring grey level dependence k within the image. Note that
in our definition a complete neighbourhood is no longer required. Thus every voxel is considered as
a center voxel with a neighbourhood, instead of being constrained to the voxels within the square in
panel (a).
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3.11.1 Low dependence emphasis SODN

This feature emphasises low neighbouring grey level dependence counts. Sun and Wee 67 refer to

this feature as small number emphasis. It is defined as:

Fngl.lde =
1

Ns

Nn∑
j=1

s.j
j2

3.11.2 High dependence emphasis IMOQ

This feature emphasises high neighbouring grey level dependence counts. Sun and Wee 67 refer to

this feature as large number emphasis. It is defined as:

Fngl.hde =
1

Ns

Nn∑
j=1

j2s.j

3.11.3 Low grey level count emphasis TL9H

This feature is a grey level analogue to low dependence emphasis. Instead of low neighbouring grey

level dependence counts, low grey levels are emphasised. The feature is defined as:

Fngl.lgce =
1

Ns

Ng∑
i=1

si.
i2

3.11.4 High grey level count emphasis OAE7

The high grey level count emphasis feature is a grey level analogue to high dependence emphasis.

The feature emphasises high grey levels, and is defined as:

Fngl.hgce =
1

Ns

Ng∑
i=1

i2si.

3.11.5 Low dependence low grey level emphasis EQ3F

This feature emphasises neighbouring grey level dependence counts in the upper left quadrant of

the NGLDM, where low dependence counts and low grey levels are located. It is defined as:

Fngl.ldlge =
1

Ns

Ng∑
i=1

Nn∑
j=1

sij
i2j2

3.11.6 Low dependence high grey level emphasis JA6D

This feature emphasises neighbouring grey level dependence counts in the lower left quadrant of

the NGLDM, where low dependence counts and high grey levels are located. The feature is defined

as:

Fngl.ldhge =
1

Ns

Ng∑
i=1

Nn∑
j=1

i2sij
j2
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3.11.7 High dependence low grey level emphasis NBZI

This feature emphasises neighbouring grey level dependence counts in the upper right quadrant of

the NGLDM, where high dependence counts and low grey levels are located. The feature is defined

as:

Fngl.hdlge =
1

Ns

Ng∑
i=1

Nn∑
j=1

j2sij
i2

3.11.8 High dependence high grey level emphasis 9QMG

The high dependence high grey level emphasis feature emphasises neighbouring grey level depend-

ence counts in the lower right quadrant of the NGLDM, where high dependence counts and high

grey levels are located. The feature is defined as:

Fngl.hdhge =
1

Ns

Ng∑
i=1

Nn∑
j=1

i2j2sij

3.11.9 Grey level non-uniformity FP8K

Grey level non-uniformity assesses the distribution of neighbouring grey level dependence counts

over the grey values. The feature value is low when dependence counts are equally distributed

along grey levels. The feature is defined as:

Fngl.glnu =
1

Ns

Ng∑
i=1

s2
i.

3.11.10 Normalised grey level non-uniformity 5SPA

This is a normalised version of the grey level non-uniformity feature. It is defined as:

Fngl.glnu.norm =
1

N2
s

Ng∑
i=1

s2
i.

When calculating grey level non-uniformity normalised using a single 3D NGLDM matrix, it is

equivalent to the intensity histogram uniformity feature77.

3.11.11 Dependence count non-uniformity Z87G

This features assesses the distribution of neighbouring grey level dependence counts over the differ-

ent dependence counts. The feature value is low when dependence counts are equally distributed.

Sun and Wee 67 refer to this feature as number non-uniformity. It is defined as:

Fngl.dcnu =
1

Ns

Nn∑
j=1

s2
.j
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3.11.12 Dependence count non-uniformity normalised OKJI

This is a normalised version of the dependence count non-uniformity feature. It is defined as:

Fngl.dcnu.norm =
1

N2
s

Nn∑
i=1

s2
.j

3.11.13 Dependence count percentage 6XV8

This feature measures the fraction of the number of realised neighbourhoods and the maximum

number of potential neighbourhoods. Dependence count percentage may be completely omitted

as it evaluates to 1 when complete neighbourhoods are not required, as is the case under our

definition. It is defined as:

Fngl.dc.perc =
Ns
Nv

3.11.14 Grey level variance 1PFV

This feature estimates the variance in dependence counts over the grey levels. Let pij = sij/Ns be

the joint probability estimate for finding discretised grey level i with dependence j. The feature is

then defined as:

Fngl.gl.var =

Ng∑
i=1

Nn∑
j=1

(i− µ)2pij

Here, µ =
∑Ng

i=1

∑Nn

j=1 i pij .

3.11.15 Dependence count variance DNX2

This feature estimates the variance in dependence counts over the different possible dependence

counts. As before let pij = sij/Ns. The feature is defined as:

Fngl.dc.var =

Ng∑
i=1

Nn∑
j=1

(j − µ)2pij

Mean dependence count is defined as µ =
∑Ng

i=1

∑Nn

j=1 j pij .

3.11.16 Dependence count entropy FCBV

This feature is referred to as entropy by Sun and Wee 67 . Let pij = sij/Ns. Dependence count

entropy is then defined as:

Fngl.dc.entr = −
Ng∑
i=1

Nn∑
j=1

pij log2 pij

This definition remedies an error in the definition of Sun and Wee 67 , where the term within the

logarithm is dependence count sij instead of count probability pij .
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3.11.17 Dependence count energy CAS9

This feature is called second moment by Sun and Wee 67 . Let pij = sij/Ns. Then dependence

count energy is defined as:

Fngl.dc.energy =

Ng∑
i=1

Nn∑
j=1

p2
ij

This definition also remedies an error in the original definition, where squared dependence count

s2
ij is divided by Ns only, thus leaving a major volume dependency. In the definition given here,

s2
ij is normalised by N2

s through the use of count probability pij .



Chapter 4

Image biomarker reporting

guidelines

Reliable and complete reporting is necessary to ensure reproducibility and validation of results. To

help provide a complete report on image processing and image biomarker extraction, we present

the guidelines below, as well as a nomenclature system to uniquely features.

4.1 Reporting guidelines

These guidelines are partially based on the work of Sollini et al. 62 . Additionally, guidelines are

derived from the image processing and feature calculation steps described within this document.

An earlier version was reported elsewhere Vallieres et al. 75 .

General

imaging Describe which type of imaging was acquired, e.g. CT, PET.

acquisition Describe image acquisition details, i.e. scanner vendor, method

of image acquisition (e.g. dynamic, contrast-enhanced), con-

trast agents, molecular labels and stainings, as well as image

acquisition parameters (e.g. MR TE times, CT tube voltage

and current).

reconstruction Describe how images were reconstructed from the acquired

data, e.g. (iterative) reconstruction algorithm parameters and

voxel dimensions.
approach Describe whether the image volume is analysed slice-by-slice

(2D), or as a volume (3D).

process workflow Describe the sequence of image processing steps used for the

analysis, preferably schematically.

software Describe which software (if any) or in-house code was used to

perform image processing and feature extraction.

data availability Describe whether and where (image) data, ROIs and software

code is made available.
Data conversion

continued on next page

75
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procedure Describe how data was converted from reconstructed image

data, e.g. by calculation of standard uptake values for PET.

References to algorithms should be provided, or otherwise de-

scribed in detail.
Image post-acquisition processing

procedure Describe post-processing steps and parameters, e.g. field-of-

view illumination correction in microscopy, noise correction in

MRI and partial volume effect correction in PET. References

to algorithms should be provided, or otherwise described in

detail.
Segmentation

ROI Describe which regions of interest were delineated and used for

analysis, e.g. specific organs, specific cells, primary tumours.

procedure Describe how regions of interest were delineated in the im-

age. Specify if segmentation was performed manually, semi-

automated or fully automated, by how many users/experts,

and how consensus was formed (if applicable). Algorithms

and settings used should be listed.

Interpolation

voxel dimensions Specify original and interpolated voxel dimensions.

image interpolation method Specify interpolation method used, e.g. trilinear interpolation.

Specify how original and interpolation grids were aligned.

image intensity rounding Specify rounding procedures for non-integer interpolated grey

levels (if applicable).

ROI interpolation method Specify interpolation method used to interpolate ROI morpho-

logical and intensity masks.

ROI partial volume Specify minimum partial volume fraction required to include

an interpolated ROI mask voxel in the interpolated ROI (if

applicable).

Re-segmentation

ROI mask criteria Specify which criteria were used to include or exclude voxels

from an ROI mask (if applicable).

Discretisation

discretisation method Specify which method is being used for discretising image in-

tensities. References to the method should be provided, or

otherwise described in detail.
discretisation parameters Specify discretisation parameters for discretisation, e.g. num-

ber of bins or bin width.
Feature calculation

feature set Report which features were calculated. References to feature

definitions should be provided, or otherwise described in detail.

feature parameters Describe specific settings used for feature calculation, e.g. the

distance setting and matrix merging method for the grey level

co-occurrence matrix.
continued on next page
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standardisation State whether image processing and feature calculation were

tested on the digital phantom and the radiomics phantom data.

State whether the feature values calculated match the IBSI

benchmark values; otherwise state which ones do not match

benchmark values, and indicate why.

Table 4.1 — Guidelines for reporting on image biomarker extraction.

4.2 Feature nomenclature

Image features may be extracted using a variety of different settings, and may even share the same

name. A feature nomenclature is thus required. Let us take the example of differentiating the fol-

lowing features: i) intensity histogram-based entropy, discretised using a fixed bin size algorithm

with 25 HU bins, extracted from a CT image; and ii) grey level run length matrix entropy, dis-

cretised using a fixed bin number algorithm with 32 bins, extracted from a PET image. To refer to

both as entropy would be ambiguous, whereas to add a full textual description would be cumber-

some. In the nomenclature proposed below, the features would be called entropyIH, CT, FBS:25HU

and entropyRLM, PET, FBN:32, respectively.

Features are thus indicated by a feature name and a subscript. As the nomenclature is designed

to both concise and complete, only details for which ambiguity may exist are to be explicitly

incorporated in the subscript. The subscript of a feature name may contain the following items to

address ambiguous naming:

1. An abbreviation of the feature family (required).

2. The aggregation method of a feature (optional).

3. A descriptor describing the modality the feature is based on, the specific channel (for mi-

croscopy images), the specific imaging data (in the case of repeat imaging or delta-features)

sets, conversions (such as SUV and SUL), and/or the specific ROI. For example, one could

write PET:SUV to separate it from CT and PET:SUL features (optional).

4. Spatial filters and settings (optional).

5. The interpolation algorithm and uniform interpolation grid spacing (optional).

6. The re-segmentation range and outlier filtering (optional).

7. The discretisation method and relevant discretisation parameters, i.e. number of bins or bin

size (optional).

8. Feature specific parameters, such as distance for some texture features (optional).

Optional descriptors are only added to the subscript if there are multiple possibilities. For example,

if only CT data is used, adding the modality to the subscript is not required. Nonetheless, such

details must be reported as well (see section 4.1).

The sections below have tables with permanent IBSI identifiers for concepts that were defined

within this document.
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4.2.1 Abbreviating feature families

The following is a list of the feature families in the document and their suggested abbreviations:

feature family abbreviation

morphology MORPH HCUG

local intensity LI 9ST6

intensity-based statistics IS, STAT UHIW

intensity histogram IH ZVCW

intensity-volume histogram IVH P88C

grey level co-occurrence matrix GLCM, CM LFYI

grey level run length matrix GLRLM, RLM TP0I

grey level size zone matrix GLSZM, SZM 9SAK

grey level distance zone matrix GLDZM, DZM VMDZ

neighbourhood grey tone difference matrix NGTDM IPET

neighbouring grey level dependence matrix NGLDM REK0

4.2.2 Abbreviating feature aggregation

The following is a list of feature families and the possible aggregation methods:

morphology, LI

– features are 3D by definition DHQ4

IS, IH, IVH

2D averaged over slices (rare) 3IDG

–, 3D calculated over the volume (default) DHQ4

GLCM, GLRLM

2D:avg averaged over slices and directions BTW3

2D:mrg, 2D:smrg merged directions per slice and averaged SUJT

2D:vmrg merged over all slices (rare) ZW7Z

3D:avg averaged over 3D directions ITBB

3D:mrg merged 3D directions IAZD

GLSZM, GLDZM, NGTDM, NGLDM

2D, 2D:avg averaged over slices 8QNN

2D:mrg merged over all slices (rare) 62GR

3D calculated from single 3D matrix KOBO

In the list above, ’–’ signifies an empty entry which does not need to be added to the subscript.

The following examples highlight the nomenclature used above:

• joint maximumCM, 2D:avg: GLCM-based joint maximum feature, calculated by averaging the

feature for every in-slice GLCM.
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• short runs emphasisRLM, 3D:mrg: RLM-based short runs emphasis feature, calculated from

an RLM that was aggregated by merging the RLM of each 3D direction.

• meanIS: intensity statistical mean feature, calculated over the 3D ROI volume.

• grey level varianceSZM, 2D: SZM-based grey level variance feature, calculated by averaging

the feature value from the SZM in each slice over all the slices.

4.2.3 Abbreviating interpolation

The following is a list of interpolation methods and the suggested notation. Note that # is the

interpolation spacing, including units, and dim is 2D for interpolation with the slice plane and 3D

for volumetric interpolation.

interpolation method notation

none INT:–

nearest neighbour interpolation NNB:dim:#

linear interpolation LIN:dim:#

cubic convolution interpolation CCI:dim:#

cubic spline interpolation CSI:dim:#, SI3:dim:#

The dimension attribute and interpolation spacing may be omitted if this is clear from the context.

The following examples highlight the nomenclature introduced above:

• meanIS, LIN:2D:2mm: intensity statistical mean feature, calculated after bilinear interpolation

with the slice planes to uniform voxel sizes of 2mm.

• meanIH, NNB:3D:1mm: intensity histogram mean feature, calculated after trilinear interpola-

tion to uniform voxel sizes of 1mm.

• joint maximumCM, 2D:mrg, CSI:2D:2mm: GLCM-based joint maximum feature, calculated by

first merging all GLCM within a slice to single GLCM, calculating the feature and then av-

eraging the feature values over the slices. GLCMs were determined in the image interpolated

within the slice plane to 2 × 2mm voxels using cubic spline interpolation.

4.2.4 Describing re-segmentation

Re-segmentation can be noted as follows:

re-segmentation method notation

none RS:–

range RS:[#,#] USB3

outlier filtering RS:#σ 7ACA

In the table above # signify numbers. A re-segmentation range can be half-open, i.e. RS:[#,∞).

Re-segmentation methods may moreover be chained, i.e. both range and outlier filtering methods

may be used in sequence. This is noted as RS:[#,#]+#σ, when range re-segmentation takes place

before applying an outlier threshold, and RS:#σ+[#,#] vice versa. The following are examples of

the application of the above notation:
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• meanIS, CT, RS:[-200,150]: intensity statistical mean feature, based on an ROI in a CT image

that was re-segmented within a [-200,150] HU range.

• meanIS, PET:SUV, RS:[3,∞): intensity statistical mean feature, based on an ROI in a PET image

with SUV values, that was re-segmented to contain only SUV of 3 and above.

• meanIS, MRI:T1, RS:3σ: intensity statistical mean feature, based on an ROI in a T1-weighted

MR image where the ROI was re-segmented by removing voxels with an intensity outside a

µ± 3σ range.

4.2.5 Abbreviating discretisation

The following is a list of discretisation methods and the suggested notation. Note that # is the

value of the relevant discretisation parameter, e.g. number of bins or bin size, including units.

discretisation method notation

none DIS:–

fixed bin size FBS:# Q3RU

fixed bin number FBN:# K15C

histogram equalisation EQ:#

Lloyd-Max, minimum mean squared LM:#, MMS:#

In the table above, # signify numbers such as the number of bins or their width. Histogram

equalisation of the ROI intensities can be performed before the ”none”, ”fixed bin size”, ”fixed bin

number” or ”Lloyd-Max, minimum mean squared” algorithms defined above, with # specifying

the number of bins in the histogram to be equalised. The following are examples of the application

of the above notation:

• meanIH,PET:SUV,RS[0,∞],FBS:0.2: intensity histogram mean feature, based on an ROI in a

SUV-PET image, with bin-width of 0.2 SUV, and binning from 0.0 SUV.

• grey level varianceSZM,MR:T1,RS:3σ,FBN:64: size zone matrix-based grey level variance feature,

based on an ROI in a T1-weighted MR image, with 3σ re-segmentation and subsequent

binning into 64 bins.

4.2.6 Abbreviating feature-specific parameters

Some features and feature families require additional parameters, which may be varied. These are

the following:

grey level co-occurrence matrix

co-occurrence matrix symmetry

–, SYM symmetrical co-occurrence matrices

ASYM asymmetrical co-occurrence matrices (not

recommended)

distance

δ:#, δ-∞:# Chebyshev (`∞) norm with distance # (default) PVMT

continued on next page
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δ-2:# Euclidean (`2) norm with distance # G9EV

δ-1:# Manhattan (`1) norm with distance # LIFZ

distance weighting

–, w:1 no weighting (default)

w:f weighting with function f

grey level run length matrix

distance weighting

–, w:1 no weighting (default)

w:f weighting with function f

grey level size zone matrix

linkage distance

δ:#, δ-∞:# Chebyshev (`∞) norm with distance (default) # PVMT

δ-2:# Euclidean (`2) norm with distance # G9EV

δ-1:# Manhattan (`1) norm with distance # LIFZ

grey level distance zone matrix

linkage distance

δ:#, δ-∞:# Chebyshev (`∞) norm with distance (default) # PVMT

δ-2:# Euclidean (`2) norm with distance # G9EV

δ-1:# Manhattan (`1) norm with distance # LIFZ

zone distance norm

–, l-∞:# Chebyshev (`∞) norm PVMT

l-2:# Euclidean (`2) norm G9EV

l-1:# Manhattan (`1) norm (default) LIFZ

neighbourhood grey tone difference matrix

distance

δ:#, δ-∞:# Chebyshev (`∞) norm with distance # (default) PVMT

δ-2:# Euclidean (`2) norm with distance # G9EV

δ-1:# Manhattan (`1) norm with distance # LIFZ

distance weighting

–, w:1 no weighting (default)

w:f weighting with function f

neighbouring grey level dependence matrix

dependence coarseness

α:# dependence coarseness parameter with value #

distance

δ:#, δ-∞:# Chebyshev (`∞) norm with distance # (default) PVMT

continued on next page
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δ-2:# Euclidean (`2) norm with distance # G9EV

δ-1:# Manhattan (`1) norm with distance # LIFZ

distance weighting

–, w:1 no weighting (default)

w:f weighting with function f

In the above table, # represents numbers.



Chapter 5

Benchmarking data sets

Image features and image processing were benchmarked using a digital image phantom and the

CT image of a lung cancer patient, which are described below.

5.1 Digital phantom

A small digital phantom was developed to compare image features. The phantom is shown in

figure 5.1. The phantom has the following characteristics:

• The phantom consists of 5× 4× 4 (x, y, z) voxels.

• A slice consists of the voxels in (x, y) plane for a particular slice at position z. Therefore

slices are stacked in the z direction.

• Voxels are 2.0× 2.0× 2.0 mm in size.

• Not all voxels are included in the region of interest. Several excluded voxels are located on

the outside of the ROI, and one internal voxel was excluded as well. Voxels excluded from

the ROI are shown in blue in figure 5.1.

• Some intensities are not present in the phantom. Notably, grey levels 2 and 5 are absent. 1

is the lowest grey level present in the ROI, and 6 the highest.

5.1.1 Calculating image features

The digital phantom does not require the additional image processing that conventional images

require before feature calculation. Thus, feature calculation is done directly on the phantom itself.

The following should be taken into account for calculating image features:

• Discretisation is not required. All features are to be calculated using the phantom as it is. Al-

ternatively, one could use a fixed bin size discretisation of 1 or fixed bin number discretisation

of 6 bins, which does not alter the contents of the phantom.

• Grey level co-occurrence matrices are symmetrical and calculated for (Chebyshev) distance

δ = 1.

• Neighbouring grey level dependence and neighbourhood grey tone difference matrices are

likewise calculated for (Chebyshev) distance δ = 1. Additionally, the neighbouring grey level

dependence coarseness parameter has the value α = 0.

83
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• Because discretisation is lacking, most intensity-based statistical features will match their

intensity histogram-based analogues in value.

• The ROI morphological and intensity masks are identical for the digital phantom, due to

lack of re-segmentation.

5.2 Radiomics phantom data

A small dataset of CT images from four non-small-cell lung carcinoma patients was made publicly

available to serve as radiomics phantoms (DOI:10.17195/candat.2016.08.1). We use the image for

the first patient (PAT1) to provide benchmarks for different image processing steps.

The radiomics phantom data is stored as a stack of slices in DICOM format. The image slices can

be identified by the DCM IMG prefix. The gross tumour volume (GTV) was delineated and is used as

the region of interest (ROI). Contour information is stored as an RT structure set in the DICOM

file starting with DCM RS. For broader use, both the DICOM set and segmentation mask have been

converted to the NifTI format. When using the data in NifTI format, both image stacks should

be converted to (at least) 32-bit floating point and rounded to the nearest integer before further

processing.

Five image processing configurations are defined to test different image processing algorithms,

see Table 5.1. While most settings are self-explanatory, there are several aspects that require some

attention. Configurations are divided in 2D and 3D approaches. For the 2D configurations (A, B),

image interpolation is conducted within the slice, and likewise texture features are extracted from

the in-slice plane, and not volumetrically (3D). For the 3D configurations (C-E) interpolation is

conducted in three dimensions, and features are likewise extracted volumetrically. Discretisation

is moreover required for texture, intensity histogram and intensity-volume histogram features, and

both fixed bin number and fixed bin size algorithms are tested.

5.2.1 Notes on interpolation

Interpolation has a major influence on feature values. Different algorithm implementations of the

same interpolation method may ostensibly provide the same functionality, but lead to different

interpolation grids. It is therefore recommended to read the documentation of the particular

implementation to assess if the implementation allows or implements the following guidelines:

• The spatial origin of the original grid in world coordinates matches the DICOM origin by

definition.

• The size of the interpolation grid is determined by rounding the fractional grid size towards

infinity, i.e. a ceiling operation. This prevents the interpolation grid from disappearing for

very small images, but is otherwise an arbitrary choice.

• The centers of the interpolation and original image grids should be identical, i.e. the in-

terpolation grid is centered on the center of the original image grid. This prevents spacing

inconsistencies in the interpolation grid and avoids potential indexing issues.

• The extent of the interpolation grid is, by definition, always equal or larger than that of the

original grid. This means that intensities at the grid boundary are extrapolated. To facilitate

this process, the image should be sufficiently padded with voxels that take on the nearest

boundary intensity.

http://dx.doi.org/10.17195/candat.2016.08.1
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Figure 5.1 — Exploded view of the test volume. The number in each voxel corresponds with its grey
level. Blue voxels are excluded from the region of interest. The coordinate system is so that x increases
from left to right, y increases from back to front and z increases from top to bottom, as is indicated
by the axis definition in the top-left.
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• The floating point representation of the image and the ROI masks affects interpolation pre-

cision, and consequentially feature values. Image and ROI masks should at least be repres-

ented at full precision (32-bit) to avoid rounding errors. One example is the unintended

exclusion of voxels from the interpolated ROI mask, which occurs when interpolation yields

0.4999. . . instead of 0.5. When images and ROI masks are converted from lower precision

(e.g. 16-bit), they may require rounding if the original data were integer values, such as

Hounsfield Units or the ROI mask labels.

More details are provided in Section 2.4.

5.2.2 Diagnostic features

Identifying issues with an implementation of the image processing sequence may be challenging.

Multiple steps follow one another and differences propagate. Hence we define a small number of

diagnostic features that describe how the image and ROI masks change with each image processing

step.

Import diagnostic features for the five different configurations are shown in chapter B of the

appendix.

Initial image stack. The following features may be used to describe the initial image stack (i.e.

after loading image data for processing):

• Image dimensions. This describes the image dimensions in voxels along the different image

axes.

• Voxel dimensions. This describes the voxel dimensions in mm. The dimension along the z-

axis is equal to the distance between the origin voxels of two adjacent slices, and is generally

equal to the slice thickness.

• Mean intensity. This is the average intensity within the entire image.

• Minimum intensity. This is the lowest intensity within the entire image.

• Maximum intensity. This is the highest intensity within the entire image.

Interpolated image stack. The above features may also be used to describe the image stack

after image interpolation.

Initial region of interest. The following descriptors are used to describe the region of interest

(ROI) directly after segmentation of the image:

• ROI intensity mask dimensions. This describes the dimensions, in voxels, of the ROI intensity

mask.

• ROI intensity mask bounding box dimensions. This describes the dimensions, in voxels, of

the bounding box of the ROI intensity mask.

• ROI morphological mask bounding box dimensions. This describes the dimensions, in voxels,

of the bounding box of the ROI morphological mask.

• Number of voxels in the ROI intensity mask. This describes the number of voxels included

in the ROI intensity mask.
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• Number of voxels in the ROI morphological mask. This describes the number of voxels

included in the ROI intensity mask.

• Mean ROI intensity. This is the mean intensity of image voxels within the ROI intensity

mask.

• Minimum ROI intensity. This is the lowest intensity of image voxels within the ROI intensity

mask.

• Maximum ROI intensity. This is the highest intensity of image voxels within the ROI in-

tensity mask.

Interpolated region of interest. The same features can be used to describe the ROI after

interpolation of the ROI mask.

Re-segmented region of interest. Again, the same features as above can be used to describe

the ROI after re-segmentation.

5.2.3 Calculating image features

Unlike the digital phantom, the radiomics phantom does require additional image processing, which

is done according to the processing configurations described in Table 5.1. The following should be

taken into account when calculating image features:

• Grey level co-occurrence matrices are symmetrical and calculated for (Chebyshev) distance

δ = 1.

• Neighbouring grey level dependence and neighbourhood grey tone difference matrices are

likewise calculated for (Chebyshev) distance δ = 1. Additionally, the neighbouring grey level

dependence coarseness parameter α = 0.

• Intensity-based statistical features and their intensity histogram-based analogues will differ

in value due to discretisation, in contrast to the same features for the digital phantom.

• Due to re-segmentation, the ROI morphological and intensity masks are not identical.

• Calculation of IVH feature: since by default CT contains definite and discrete intensities,

no separate discretisation prior to the calculation of intensity-volume histogram features is

required. This is the case for configurations A, B and D (i.e. ‘definite intensity units – discrete

case’). However, for configurations C and E, we re-discretise the ROI intensities prior to

calculation of intensity-volume histogram features to provide better verification of processing

algorithms. Configuration C simulates the ‘definite intensity units – continuous case’, while

configuration E simulates the ‘arbitrary intensity units’ case where re-segmentation range is

not used. For details, please consult section 3.5.
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config. A config. B config. C config. D config. E

Sample PAT1 PAT1 PAT1 PAT1 PAT1

ROI GTV-1 GTV-1 GTV-1 GTV-1 GTV-1

Approach 2D 2D 3D 3D 3D

Interpolation no yes yes yes yes

Voxel dimension (mm) 2× 2 2× 2× 2 2× 2× 2 2× 2× 2

Interpolation method bilinear trilinear trilinear tricubic spline

Grey level rounding nearest integer nearest integer nearest integer nearest integer

ROI interp. method bilinear trilinear trilinear trilinear

ROI partial volume 0.5 0.5 0.5 0.5

Re-segmentation

Range (HU) [−500, 400] [−500, 400] [−1000, 400] no [−500, 400]

Outliers no no no 3σ 3σ

Discretisation

Texture and IH FBS: 25 HU FBN: 32 bins FBS: 25 HU FBN: 32 bins FBN: 32 bins

IVH no no FBS: 2.5 HU no FBN: 1000 bins

Table 5.1 — Different configurations for image processing. For details, refer to the corresponding sections in chapter 2. ROI: region of interest; HU: Hounsfield Unit;
IH: intensity histogram; FBS: fixed bin size; FBN: fixed bin number; IVH: intensity-volume histogram; NA: not applicable.



Chapter 6

Benchmarks

This chapter presents the feature benchmark values for the digital phantom and radiomics phantom.

Features based on texture matrices determined by slice and then fully merged (Figures 3.3c and

3.4b) were not benchmarked, as this approach was not used. The list of benchmark values is also

available as a separate .csv table.

A tolerance was determined for the benchmark values in the radiomics phantom, as minor

differences introduced during image processing may lead to different feature values. For this

purpose the image data and the mask were rotated (from −15◦ to 15◦ in 5◦ steps) and translated

(0.0, 0.25, 0.50 and 0.75 times the voxel spacing) in the xy-plane, and the ROI mask was eroded

(2mm), kept the same, and dilated (2mm). This lead to 336 values for a single feature. The

tolerance shown in the tables in this chapter is equal 5% of the interquartile range of these values.

Additionally, it should be noted that all benchmarks are values actually produced by teams

involved in the IBSI, rather than averages. All contributed values were rounded to 3 significant

digits before being processed and analysed to determine consensus.

Benchmark results are removed until stronger consensus has been established.
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Appendix A

Digital phantom texture matrices

This section contains the texture matrices extracted from the digital phantom for

reference and benchmark purposes.

A.1 Grey level co-occurrence matrix (2D)

i j n

1.0 1.0 10

1.0 4.0 4

4.0 1.0 4

4.0 4.0 6

4.0 6.0 1

6.0 4.0 1

6.0 6.0 4

(a) x: (0,1,0)
slice: 1 of 4

i j n

1.0 1.0 16

1.0 4.0 2

3.0 6.0 2

4.0 1.0 2

4.0 6.0 1

6.0 3.0 2

6.0 4.0 1

(b) x: (0,1,0)
slice: 2 of 4

i j n

1.0 1.0 18

1.0 4.0 2

4.0 1.0 2

(c) x: (0,1,0)
slice: 3 of 4

i j n

1.0 1.0 20

1.0 4.0 2

1.0 6.0 1

4.0 1.0 2

6.0 1.0 1

(d) x: (0,1,0)
slice: 4 of 4

i j n

1.0 1.0 2

1.0 4.0 4

1.0 6.0 3

4.0 1.0 4

4.0 4.0 4

4.0 6.0 2

6.0 1.0 3

6.0 4.0 2

(e) x: (1,-1,0)
slice: 1 of 4

i j n

1.0 1.0 6

1.0 3.0 1

1.0 4.0 3

1.0 6.0 3

3.0 1.0 1

3.0 4.0 1

4.0 1.0 3

4.0 3.0 1

6.0 1.0 3

(f) x: (1,-1,0)
slice: 2 of 4

i j n

1.0 1.0 10

1.0 4.0 2

1.0 6.0 1

4.0 1.0 2

6.0 1.0 1

(g) x: (1,-1,0)
slice: 3 of 4

i j n

1.0 1.0 14

1.0 4.0 2

1.0 6.0 1

4.0 1.0 2

6.0 1.0 1

(h) x: (1,-1,0)
slice: 4 of 4
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i j n

1.0 1.0 4

1.0 4.0 6

1.0 6.0 2

4.0 1.0 6

4.0 4.0 4

4.0 6.0 4

6.0 1.0 2

6.0 4.0 4

(i) d: (1,0,0)
slice: 1 of 4

i j n

1.0 1.0 10

1.0 3.0 2

1.0 4.0 2

1.0 6.0 3

3.0 1.0 2

4.0 1.0 2

4.0 4.0 4

4.0 6.0 1

6.0 1.0 3

6.0 4.0 1

(j) d: (1,0,0)
slice: 2 of 4

i j n

1.0 1.0 16

1.0 4.0 1

1.0 6.0 2

4.0 1.0 1

4.0 4.0 2

6.0 1.0 2

(k) d: (1,0,0)
slice: 3 of 4

i j n

1.0 1.0 20

1.0 4.0 1

1.0 6.0 2

4.0 1.0 1

4.0 4.0 2

6.0 1.0 2

(l) d: (1,0,0)
slice: 4 of 4

i j n

1.0 1.0 6

1.0 4.0 3

1.0 6.0 1

4.0 1.0 3

4.0 4.0 2

4.0 6.0 4

6.0 1.0 1

6.0 4.0 4

(m) d: (1,1,0)
slice: 1 of 4

i j n

1.0 1.0 10

1.0 3.0 2

1.0 4.0 1

1.0 6.0 2

3.0 1.0 2

4.0 1.0 1

4.0 6.0 1

6.0 1.0 2

6.0 4.0 1

(n) d: (1,1,0)
slice: 2 of 4

i j n

1.0 1.0 12

1.0 4.0 2

1.0 6.0 1

4.0 1.0 2

6.0 1.0 1

(o) d: (1,1,0)
slice: 3 of 4

i j n

1.0 1.0 16

1.0 4.0 2

1.0 6.0 1

4.0 1.0 2

6.0 1.0 1

(p) d: (1,1,0)
slice: 4 of 4

Table A.1 — Grey-level co-occurrence matrices extracted from the xy plane (2D) of the digital
phantom using Chebyshev distance 1. x indicates the direction in (x, y, z) coordinates.

A.2 Grey level co-occurrence matrix (2D, merged)



APPENDIX A. DIGITAL PHANTOM TEXTURE MATRICES 92

i j n

1.0 1.0 22

1.0 4.0 17

1.0 6.0 6

4.0 1.0 17

4.0 4.0 16

4.0 6.0 11

6.0 1.0 6

6.0 4.0 11

6.0 6.0 4

(a) slice: 1 of 4

i j n

1.0 1.0 42

1.0 3.0 5

1.0 4.0 8

1.0 6.0 8

3.0 1.0 5

3.0 4.0 1

3.0 6.0 2

4.0 1.0 8

4.0 3.0 1

4.0 4.0 4

4.0 6.0 3

6.0 1.0 8

6.0 3.0 2

6.0 4.0 3

(b) slice: 2 of 4

i j n

1.0 1.0 56

1.0 4.0 7

1.0 6.0 4

4.0 1.0 7

4.0 4.0 2

6.0 1.0 4

(c) slice: 3 of 4

i j n

1.0 1.0 70

1.0 4.0 7

1.0 6.0 5

4.0 1.0 7

4.0 4.0 2

6.0 1.0 5

(d) slice: 4 of 4

Table A.2 — Merged grey-level co-occurrence matrices extracted from the xy plane (2D) of the digital
phantom using Chebyshev distance 1.

A.3 Grey level co-occurrence matrix (3D)

i j n

1.0 1.0 66

1.0 4.0 5

1.0 6.0 1

3.0 6.0 1

4.0 1.0 5

4.0 4.0 16

6.0 1.0 1

6.0 3.0 1

6.0 6.0 8

(a) x: (0,0,1)

i j n

1.0 1.0 42

1.0 3.0 1

1.0 4.0 9

1.0 6.0 1

3.0 1.0 1

3.0 6.0 1

4.0 1.0 9

4.0 4.0 2

4.0 6.0 2

6.0 1.0 1

6.0 3.0 1

6.0 4.0 2

6.0 6.0 2

(b) x: (0,1,-1)

i j n

1.0 1.0 64

1.0 4.0 10

1.0 6.0 1

3.0 6.0 2

4.0 1.0 10

4.0 4.0 6

4.0 6.0 2

6.0 1.0 1

6.0 3.0 2

6.0 4.0 2

6.0 6.0 4

(c) x: (0,1,0)

i j n

1.0 1.0 52

1.0 4.0 8

3.0 6.0 2

4.0 1.0 8

4.0 4.0 2

4.0 6.0 1

6.0 3.0 2

6.0 4.0 1

6.0 6.0 2

(d) x: (0,1,1)
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i j n

1.0 1.0 30

1.0 3.0 2

1.0 4.0 7

1.0 6.0 5

3.0 1.0 2

4.0 1.0 7

4.0 6.0 2

6.0 1.0 5

6.0 4.0 2

(e) x: (1,-1,-1)

i j n

1.0 1.0 32

1.0 3.0 1

1.0 4.0 11

1.0 6.0 8

3.0 1.0 1

3.0 4.0 1

4.0 1.0 11

4.0 3.0 1

4.0 4.0 4

4.0 6.0 2

6.0 1.0 8

6.0 4.0 2

(f) x: (1,-1,0)

i j n

1.0 1.0 20

1.0 3.0 1

1.0 4.0 10

1.0 6.0 6

3.0 1.0 1

3.0 4.0 1

4.0 1.0 10

4.0 3.0 1

4.0 4.0 2

6.0 1.0 6

(g) x: (1,-1,1)

i j n

1.0 1.0 38

1.0 3.0 1

1.0 4.0 7

1.0 6.0 8

3.0 1.0 1

3.0 4.0 1

4.0 1.0 7

4.0 3.0 1

4.0 4.0 8

4.0 6.0 2

6.0 1.0 8

6.0 4.0 2

(h) x: (1,0,-1)

i j n

1.0 1.0 50

1.0 3.0 2

1.0 4.0 10

1.0 6.0 9

3.0 1.0 2

4.0 1.0 10

4.0 4.0 12

4.0 6.0 5

6.0 1.0 9

6.0 4.0 5

(i) x: (1,0,0)

i j n

1.0 1.0 34

1.0 3.0 2

1.0 4.0 8

1.0 6.0 7

3.0 1.0 2

4.0 1.0 8

4.0 4.0 8

4.0 6.0 3

6.0 1.0 7

6.0 4.0 3

(j) x: (1,0,1)

i j n

1.0 1.0 32

1.0 3.0 1

1.0 4.0 6

1.0 6.0 4

3.0 1.0 1

3.0 4.0 1

4.0 1.0 6

4.0 3.0 1

4.0 6.0 3

6.0 1.0 4

6.0 4.0 3

(k) x: (1,1,-1)

i j n

1.0 1.0 44

1.0 3.0 2

1.0 4.0 8

1.0 6.0 5

3.0 1.0 2

4.0 1.0 8

4.0 4.0 2

4.0 6.0 5

6.0 1.0 5

6.0 4.0 5

(l) x: (1,1,0)

i j n

1.0 1.0 32

1.0 3.0 1

1.0 4.0 6

1.0 6.0 6

3.0 1.0 1

3.0 4.0 1

4.0 1.0 6

4.0 3.0 1

4.0 4.0 2

4.0 6.0 1

6.0 1.0 6

6.0 4.0 1

(m) x: (1,1,1)

Table A.3 — Grey-level co-occurrence matrices extracted volumetrically (3D) from the digital phantom
using Chebyshev distance 1. x indicates the direction in (x, y, z) coordinates.
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A.4 Grey level co-occurrence matrix (3D, merged)

i j n

1.0 1.0 536

1.0 3.0 14

1.0 4.0 105

1.0 6.0 61

3.0 1.0 14

3.0 4.0 5

3.0 6.0 6

4.0 1.0 105

4.0 3.0 5

4.0 4.0 64

4.0 6.0 28

6.0 1.0 61

6.0 3.0 6

6.0 4.0 28

6.0 6.0 16

Table A.4 — Merged grey-level co-occurrence matrix extracted volumetrically (3D) from the digital
phantom using Chebyshev distance 1.

A.5 Grey level run length matrix (2D)

i r n

1.0 1.0 1.0

1.0 2.0 2.0

1.0 4.0 1.0

4.0 1.0 2.0

4.0 2.0 3.0

6.0 3.0 1.0

(a) x: (0,1,0)
slice: 1 of 4

i r n

1.0 2.0 2.0

1.0 4.0 2.0

3.0 1.0 1.0

4.0 1.0 4.0

6.0 1.0 2.0

(b) x: (0,1,0)
slice: 2 of 4

i r n

1.0 1.0 1.0

1.0 3.0 3.0

1.0 4.0 1.0

4.0 1.0 2.0

6.0 1.0 1.0

(c) x: (0,1,0)
slice: 3 of 4

i r n

1.0 2.0 1.0

1.0 3.0 3.0

1.0 4.0 1.0

4.0 1.0 2.0

6.0 1.0 1.0

(d) x: (0,1,0)
slice: 4 of 4



APPENDIX A. DIGITAL PHANTOM TEXTURE MATRICES 95

i r n

1.0 1.0 7.0

1.0 2.0 1.0

4.0 1.0 5.0

4.0 3.0 1.0

6.0 1.0 3.0

(e) x: (1,-1,0)
slice: 1 of 4

i r n

1.0 1.0 6.0

1.0 2.0 3.0

3.0 1.0 1.0

4.0 1.0 4.0

6.0 1.0 2.0

(f) x: (1,-1,0)
slice: 2 of 4

i r n

1.0 1.0 5.0

1.0 2.0 3.0

1.0 3.0 1.0

4.0 1.0 2.0

6.0 1.0 1.0

(g) x: (1,-1,0)
slice: 3 of 4

i r n

1.0 1.0 3.0

1.0 2.0 3.0

1.0 3.0 2.0

4.0 1.0 2.0

6.0 1.0 1.0

(h) x: (1,-1,0)
slice: 4 of 4

i r n

1.0 1.0 5.0

1.0 2.0 2.0

4.0 1.0 4.0

4.0 2.0 2.0

6.0 1.0 3.0

(i) x: (1,0,0)
slice: 1 of 4

i r n

1.0 1.0 2.0

1.0 2.0 5.0

3.0 1.0 1.0

4.0 2.0 2.0

6.0 1.0 2.0

(j) x: (1,0,0)
slice: 2 of 4

i r n

1.0 1.0 1.0

1.0 2.0 4.0

1.0 5.0 1.0

4.0 2.0 1.0

6.0 1.0 1.0

(k) x: (1,0,0)
slice: 3 of 4

i r n

1.0 1.0 1.0

1.0 2.0 2.0

1.0 5.0 2.0

4.0 2.0 1.0

6.0 1.0 1.0

(l) x: (1,0,0)
slice: 4 of 4

i r n

1.0 1.0 3.0

1.0 2.0 3.0

4.0 1.0 6.0

4.0 2.0 1.0

6.0 1.0 3.0

(m) x: (1,1,0)
slice: 1 of 4

i r n

1.0 1.0 2.0

1.0 2.0 5.0

3.0 1.0 1.0

4.0 1.0 4.0

6.0 1.0 2.0

(n) x: (1,1,0)
slice: 2 of 4

i r n

1.0 1.0 3.0

1.0 2.0 4.0

1.0 3.0 1.0

4.0 1.0 2.0

6.0 1.0 1.0

(o) x: (1,1,0)
slice: 3 of 4

i r n

1.0 1.0 2.0

1.0 2.0 3.0

1.0 3.0 1.0

1.0 4.0 1.0

4.0 1.0 2.0

6.0 1.0 1.0

(p) x: (1,1,0)
slice: 4 of 4

Table A.5 — Grey-level run length matrices extracted from the xy plane (2D) of the digital phantom.
x indicates the direction in (x, y, z) coordinates.
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A.6 Grey level run length matrix (2D, merged)

i r n

1.0 1.0 16.0

1.0 2.0 8.0

1.0 4.0 1.0

4.0 1.0 17.0

4.0 2.0 6.0

4.0 3.0 1.0

6.0 1.0 9.0

6.0 3.0 1.0

(a) slice: 1 of 4

i r n

1.0 1.0 10.0

1.0 2.0 15.0

1.0 4.0 2.0

3.0 1.0 4.0

4.0 1.0 12.0

4.0 2.0 2.0

6.0 1.0 8.0

(b) slice: 2 of 4

i r n

1.0 1.0 10.0

1.0 2.0 11.0

1.0 3.0 5.0

1.0 4.0 1.0

1.0 5.0 1.0

4.0 1.0 6.0

4.0 2.0 1.0

6.0 1.0 4.0

(c) slice: 3 of 4

i r n

1.0 1.0 6.0

1.0 2.0 9.0

1.0 3.0 6.0

1.0 4.0 2.0

1.0 5.0 2.0

4.0 1.0 6.0

4.0 2.0 1.0

6.0 1.0 4.0

(d) slice: 4 of 4

Table A.6 — Merged grey-level run length matrices extracted from the xy plane (2D) of the digital
phantom.

A.7 Grey level run length matrix (3D)

i r n

1.0 1.0 1.0

1.0 2.0 6.0

1.0 3.0 3.0

1.0 4.0 7.0

3.0 1.0 1.0

4.0 1.0 4.0

4.0 2.0 2.0

4.0 4.0 2.0

6.0 1.0 1.0

6.0 2.0 1.0

6.0 4.0 1.0

(a) x: (0,0,1)

i r n

1.0 1.0 11.0

1.0 2.0 15.0

1.0 3.0 3.0

3.0 1.0 1.0

4.0 1.0 14.0

4.0 2.0 1.0

6.0 1.0 5.0

6.0 2.0 1.0

(b) x: (0,1,-1)

i r n

1.0 1.0 2.0

1.0 2.0 5.0

1.0 3.0 6.0

1.0 4.0 5.0

3.0 1.0 1.0

4.0 1.0 10.0

4.0 2.0 3.0

6.0 1.0 4.0

6.0 3.0 1.0

(c) x: (0,1,0)

i r n

1.0 1.0 10.0

1.0 2.0 5.0

1.0 3.0 6.0

1.0 4.0 3.0

3.0 1.0 1.0

4.0 1.0 14.0

4.0 2.0 1.0

6.0 1.0 5.0

6.0 2.0 1.0

(d) x: (0,1,1)
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i r n

1.0 1.0 22.0

1.0 2.0 11.0

1.0 3.0 2.0

3.0 1.0 1.0

4.0 1.0 16.0

6.0 1.0 7.0

(e) x: (1,-1,-1)

i r n

1.0 1.0 21.0

1.0 2.0 10.0

1.0 3.0 3.0

3.0 1.0 1.0

4.0 1.0 13.0

4.0 3.0 1.0

6.0 1.0 7.0

(f) x: (1,-1,0)

i r n

1.0 1.0 30.0

1.0 2.0 10.0

3.0 1.0 1.0

4.0 1.0 14.0

4.0 2.0 1.0

6.0 1.0 7.0

(g) x: (1,-1,1)

i r n

1.0 1.0 16.0

1.0 2.0 12.0

1.0 3.0 2.0

1.0 4.0 1.0

3.0 1.0 1.0

4.0 1.0 8.0

4.0 2.0 4.0

6.0 1.0 7.0

(h) x: (1,0,-1)

i r n

1.0 1.0 9.0

1.0 2.0 13.0

1.0 5.0 3.0

3.0 1.0 1.0

4.0 1.0 4.0

4.0 2.0 6.0

6.0 1.0 7.0

(i) x: (1,0,0)

i r n

1.0 1.0 19.0

1.0 2.0 12.0

1.0 3.0 1.0

1.0 4.0 1.0

3.0 1.0 1.0

4.0 1.0 8.0

4.0 2.0 4.0

6.0 1.0 7.0

(j) x: (1,0,1)

i r n

1.0 1.0 20.0

1.0 2.0 12.0

1.0 3.0 2.0

3.0 1.0 1.0

4.0 1.0 16.0

6.0 1.0 7.0

(k) x: (1,1,-1)

i r n

1.0 1.0 10.0

1.0 2.0 15.0

1.0 3.0 2.0

1.0 4.0 1.0

3.0 1.0 1.0

4.0 1.0 14.0

4.0 2.0 1.0

6.0 1.0 7.0

(l) x: (1,1,0)

i r n

1.0 1.0 19.0

1.0 2.0 14.0

1.0 3.0 1.0

3.0 1.0 1.0

4.0 1.0 14.0

4.0 2.0 1.0

6.0 1.0 7.0

(m) x: (1,1,1)

Table A.7 — Grey-level run length matrices extracted volumetrically (3D) from the digital phantom.
x indicates the direction in (x, y, z) coordinates.
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A.8 Grey level run length matrix (3D, merged)

i r n

1.0 1.0 190.0

1.0 2.0 140.0

1.0 3.0 31.0

1.0 4.0 18.0

1.0 5.0 3.0

3.0 1.0 13.0

4.0 1.0 149.0

4.0 2.0 24.0

4.0 3.0 1.0

4.0 4.0 2.0

6.0 1.0 78.0

6.0 2.0 3.0

6.0 3.0 1.0

6.0 4.0 1.0

Table A.8 — Merged grey-level run length matrix extracted volumetrically (3D) from the digital
phantom.

A.9 Grey level size zone matrix (2D)

i s n

1.0 3 1

1.0 6 1

4.0 2 1

4.0 6 1

6.0 3 1

(a) slice: 1 of 4

i s n

1.0 4 1

1.0 8 1

3.0 1 1

4.0 2 2

6.0 1 2

(b) slice: 2 of 4

i s n

1.0 14 1

4.0 2 1

6.0 1 1

(c) slice: 3 of 4

i s n

1.0 15 1

4.0 2 1

6.0 1 1

(d) slice: 4 of 4

Table A.9 — Grey level size zone matrices extracted from the xy plane (2D) of the digital phantom.

A.10 Grey level size zone matrix (3D)

i s n

1.0 50 1

3.0 1 1

4.0 2 1

4.0 14 1

6.0 7 1

Table A.10 — Grey level size zone matrix extracted volumetrically (3D) from the digital phantom.
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A.11 Grey level distance zone matrix (2D)

i d n

1.0 1.0 2

4.0 1.0 2

6.0 1.0 1

(a) slice: 1 of 4

i d n

1.0 1.0 2

3.0 2.0 1

4.0 1.0 2

6.0 1.0 1

6.0 2.0 1

(b) slice: 2 of 4

i d n

1.0 1.0 1

4.0 1.0 1

6.0 1.0 1

(c) slice: 3 of 4

i d n

1.0 1.0 1

4.0 1.0 1

6.0 1.0 1

(d) slice: 4 of 4

Table A.11 — Grey level distance zone matrices extracted from the xy plane (2D) of the digital
phantom.

A.12 Grey level distance zone matrix (3D)

i d n

1.0 1.0 1

3.0 1.0 1

4.0 1.0 2

6.0 1.0 1

Table A.12 — Grey level distance zone matrix extracted volumetrically (3D) from the digital phantom.

A.13 Neighbourhood grey tone difference matrix (2D)

i s n

1.0 14.575 9

4.0 5.775 8

6.0 7.325 3

(a) slice: 1 of 4

i s n

1.0 11.928571 12

3.0 0.375000 1

4.0 4.800000 4

6.0 8.000000 2

(b) slice: 2 of 4

i s n

1.0 7.985714 14

4.0 4.650000 2

6.0 5.000000 1

(c) slice: 3 of 4

i s n

1.0 7.582143 15

4.0 4.650000 2

6.0 5.000000 1

(d) slice: 4 of 4

Table A.13 — Neighbourhood grey tone difference matrices extracted from the xy plane (2D) of the
digital phantom using Chebyshev distance 1.

A.14 Neighbourhood grey tone difference matrix (3D)
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i s n

1.0 39.946954 50

3.0 0.200000 1

4.0 20.825401 16

6.0 24.127005 7

Table A.14 — Neighbourhood grey tone difference matrix extracted volumetrically (3D) from the
digital phantom using Chebyshev distance 1.

A.15 Neighbouring grey level dependence matrix (2D)

i j s

1.0 2.0 3

1.0 3.0 1

1.0 4.0 3

1.0 5.0 2

4.0 2.0 2

4.0 3.0 4

4.0 4.0 2

6.0 2.0 2

6.0 3.0 1

(a) slice: 1 of 4

i j s

1.0 3.0 2

1.0 4.0 6

1.0 6.0 4

3.0 1.0 1

4.0 2.0 4

6.0 1.0 2

(b) slice: 2 of 4

i j s

1.0 3.0 1

1.0 4.0 5

1.0 5.0 3

1.0 6.0 3

1.0 7.0 2

4.0 2.0 2

6.0 1.0 1

(c) slice: 3 of 4

i j s

1.0 3.0 1

1.0 4.0 3

1.0 5.0 3

1.0 6.0 4

1.0 7.0 1

1.0 8.0 3

4.0 2.0 2

6.0 1.0 1

(d) slice: 4 of 4

Table A.15 — Neighbouring grey level dependence matrices extracted from the xy plane (2D) of the
digital phantom using Chebyshev distance 1 and coarseness 0.

A.16 Neighbouring grey level dependence matrix (3D)
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i j s

1.0 5.0 2

1.0 6.0 2

1.0 7.0 1

1.0 8.0 6

1.0 9.0 4

1.0 10.0 6

1.0 11.0 5

1.0 12.0 5

1.0 13.0 3

1.0 14.0 2

1.0 15.0 5

1.0 16.0 3

1.0 17.0 3

1.0 18.0 2

1.0 21.0 1

3.0 1.0 1

4.0 2.0 2

4.0 4.0 2

4.0 5.0 6

4.0 6.0 4

4.0 7.0 2

6.0 2.0 1

6.0 3.0 4

6.0 4.0 1

6.0 5.0 1

Table A.16 — Neighbouring grey level dependence matrix extracted volumetrically (3D) from the
digital phantom using Chebyshev distance 1 and coarseness 0.



Appendix B

Radiomics phantom diagnostic

features

Assessing the diagnostic features for the radiomics phantom may assist in identifying

issues with regards to image processing. Minor deviations to the values presented

in this chapter may occur due to rounding errors, or slightly different algorithmic

implementations.

Characteristics of the original image The characteristics of the original image, by

definition, are the same for all configurations.

feature config. A config. B config. C config. D config. E

image dimension x 204 204 204 204 204

image dimension y 201 201 201 201 201

image dimension z 60 60 60 60 60

voxel dimension x 0.977 0.977 0.977 0.977 0.977

voxel dimension y 0.977 0.977 0.977 0.977 0.977

voxel dimension z 3 3 3 3 3

mean intensity -266 -266 -266 -266 -266

minimum intensity -1000 -1000 -1000 -1000 -1000

maximum intensity 3065 3065 3065 3065 3065

Table B.1 — Values of characteristics of the original image. Mean intensity is rounded to the nearest
integer.

Characteristics of the interpolated image Mean, minimum and maximum intensity

may deviate due to differences in how the original image is padded to determine

the value of voxels at the edge of the interpolation grid. As we are dealing with a

CT data set, it is also important to round intensities to the nearest integer after

interpolation.
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feature config. A config. B config. C config. D config. E

image dimension x – 100 100 100 100

image dimension y – 99 99 99 99

image dimension z – 60 90 90 90

voxel dimension x – 2 2 2 2

voxel dimension y – 2 2 2 2

voxel dimension z – 3 2 2 2

mean intensity – -270 -270 -270 -270

minimum intensity – -1000 -1000 -1000 -1111

maximum intensity – 2257 1854 1854 2637

Table B.2 — Values of characteristics of the interpolated image. Mean intensity is rounded to the
nearest integer. Note that in configuration A no interpolation takes place.

Characteristics of the original ROI mask Voxel counts of the ROI mask may deviate

slightly due to differences in algorithm implementation. Different IBSI participants

reported 1 voxel more or less than the numbers provided below.

feature config. A config. B config. C config. D config. E

int. mask dimension x 204 204 204 204 204

int. mask dimension y 201 201 201 201 201

int. mask dimension z 60 60 60 60 60

int. mask bounding box dim. x 100 100 100 100 100

int. mask bounding box dim. y 99 99 99 99 99

int. mask bounding box dim. z 26 26 26 26 26

morph. mask bounding box dim. x 100 100 100 100 100

morph. mask bounding box dim. y 99 99 99 99 99

morph. mask bounding box dim. z 26 26 26 26 26

int. mask voxel count 125256 125256 125256 125256 125256

morph. mask voxel count 125256 125256 125256 125256 125256

int. mask mean intensity -47 -47 -47 -47 -47

int. mask minimum intensity -1000 -1000 -1000 -1000 -1000

int. mask maximum intensity 723 723 723 723 723

Table B.3 — Values of characteristics of the original ROI mask. Intensity and morphological masks
are identical. Mean intensity is rounded to the nearest integer.

Characteristics of the interpolated ROI mask Interpolation is a critical step in the

image processing scheme. When performing interpolation, it is important to keep

the points mentioned in section 5.2.1 in mind. Deviations in the ROI mask voxel

count are likely to occur if interpolation is performed differently.

feature config. A config. B config. C config. D config. E

int. mask dimension x – 100 100 100 100

int. mask dimension y – 99 99 99 99

int. mask dimension z – 60 90 90 90

continued on next page
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feature config. A config. B config. C config. D config. E

int. mask bounding box dim. x – 49 49 49 49

int. mask bounding box dim. y – 49 49 49 49

int. mask bounding box dim. z – 26 40 40 40

morph. mask bounding box dim. x – 49 49 49 49

morph. mask bounding box dim. y – 49 49 49 49

morph. mask bounding box dim. z – 26 40 40 40

int. mask voxel count – 29842 45985 45985 45985

morph. mask voxel count – 29842 45985 45985 45985

int. mask mean intensity – -47 -49 -49 -48

int. mask minimum intensity – -956 -939 -939 -966

int. mask maximum intensity – 525 521 521 627

Table B.4 — Values of characteristics of the interpolated ROI mask. After interpolation, intensity and
morphological masks are still identical. Mean intensity is rounded to the nearest integer. Note that in
configuration A no interpolation takes place.

Characteristics of the re-segmented ROI mask These are the characteristics of the

ROI masks within which the features are subsequently calculated.

feature config. A config. B config. C config. D config. E

int. mask dimension x 204 100 100 100 100

int. mask dimension y 201 99 99 99 99

int. mask dimension z 60 60 90 90 90

int. mask bounding box dim. x 100 49 49 49 49

int. mask bounding box dim. y 99 49 49 49 49

int. mask bounding box dim. z 26 26 40 40 40

morph. mask bounding box dim. x 100 49 49 49 49

morph. mask bounding box dim. y 99 49 49 49 49

morph. mask bounding box dim. z 26 26 40 40 40

int. mask voxel count 114596 27359 45981 44465 40398

morph. mask voxel count 125256 29842 45985 45985 45985

int. mask mean intensity 13 12 -49 -24 30

int. mask minimum intensity -500 -500 -939 -724 -345

int. mask maximum intensity 377 391 393 521 345

Table B.5 — Values of characteristics of the re-segmented ROI mask. After re-segmentation, intensity
and morphological masks are no longer identical. Mean intensity is rounded to the nearest integer.



Bibliography

[1] H. J. W. L. Aerts, E. Rios-Velazquez, R. T. H. Leijenaar, C. Parmar, P. Gross-

mann, S. Cavalho, J. Bussink, R. Monshouwer, B. Haibe-Kains, D. Rietveld,

F. J. P. Hoebers, M. M. Rietbergen, C. R. Leemans, A. Dekker, J. Quacken-

bush, R. J. Gillies, and P. Lambin. Decoding tumour phenotype by noninvasive

imaging using a quantitative radiomics approach. Nature communications, 5:

4006, 2014.
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